一、NSGA演算法簡介
非支配排序遺傳演算法(Non-dominated Sorting Genetic Algorithm,NSGA)是將遺傳演算法的種群個體按照它們的優先順序進行分類排序,使得較優的個體能夠被更好地保存下來,同時保留種群中的多樣性。它首先通過非支配排序將種群分為多個層級,然後在每一層級中根據擁擠度演算法對個體進行排序,以維護每一個層級中的多樣性。
下面是一段使用NSGA演算法進行多目標優化的Python示例代碼:
def nsga(population, generations, crossover_rate, mutation_rate):
for gen in range(generations):
offspring = []
for i in range(len(population)):
# 選擇兩個父代
parent1 = selection(population)
parent2 = selection(population)
# 對兩個父代進行雜交
child = crossover(parent1, parent2, crossover_rate)
# 對後代進行變異操作
child = mutation(child, mutation_rate)
# 將後代添加到下一代種群中
offspring.append(child)
# 合併父代和後代種群
population = population + offspring
# 對種群進行非支配排序和擁擠度排序
fronts = non_dominated_sorting(population)
sorted_population = sort_by_crowding_distance(population, fronts)
# 選擇下一代種群
population = sorted_population[:len(population)]
return population
二、NSGA演算法的非支配排序
NSGA演算法的關鍵在於如何對種群進行非支配排序。給定一組個體,非支配排序將它們分為多個層級,每一層級中的個體都是相對於同一層級中的其他個體來說非支配的。具體步驟如下:
1、計算每一個個體的支配關係,即如果一個個體在某一個目標函數上比另一個個體更好,則該個體支配另一個個體。
2、根據支配關係得到第一層級中的非支配解集合,同時將支配第一層級中的個體進行標記。
3、重複地對每一層級進行處理,直到沒有非支配解為止。在處理每一層級時,需要將上一層級中所有被標記的個體排除,並將下一層級中所有新加入的非支配解通過擁擠度演算法進行排序,以避免個體聚攏。
下面是非支配排序的代碼實現:
def non_dominated_sorting(population):
fronts = []
n = [0]*len(population)
rank = [0]*len(population)
S = [[] for i in range(len(population))]
fronts.append([])
for p in range(len(population)):
S[p] = []
n[p] = 0
for q in range(len(population)):
if population[p].dominates(population[q]):
S[p].append(q)
elif population[q].dominates(population[p]):
n[p] = n[p] + 1
if n[p] == 0:
rank[p] = 0
fronts[0].append(p)
i = 0
while len(fronts[i]) != 0:
Q = []
for p in fronts[i]:
for q in S[p]:
n[q] = n[q] - 1
if n[q] == 0:
rank[q] = i + 1
Q.append(q)
i += 1
fronts.append(Q)
return fronts[:-1]
三、NSGA演算法的擁擠度排序
在計算完每個個體的非支配級別之後,我們需要對每層內的個體進行排序,以便於選擇個體生成下一代種群。通常使用擁擠度距離來實現排序,擁擠度表示一個個體周圍有多少個個體與其距離相似。在選擇下一代種群時,我們希望不僅保留靠前的非支配解,還要儘可能多地保留多樣性。因此,當選擇靠前的非支配解時,我們傾向於選擇擁擠度高的個體,這些個體周圍有很多其他個體,說明它們距離其他個體比較遠,因此保留它們能夠維護多樣性。
下面是擁擠度排序的代碼實現:
def crowding_distance_assignment(population):
n = len(population)
for individual in population:
individual.crowding_distance = 0
for m in range(len(population[0].fitness)):
sorted_population = sorted(population, key=lambda x: x.fitness[m])
sorted_population[0].crowding_distance = sorted_population[n-1].crowding_distance = inf
for i in range(1, n-1):
sorted_population[i].crowding_distance += sorted_population[i+1].fitness[m] - sorted_population[i-1].fitness[m]
for individual in population:
individual.crowding_distance /= len(population)
四、NSGA演算法的應用舉例
下面是一段使用NSGA演算法進行多目標優化的Python示例代碼,通過調整鏈表的長度和寬度來優化鏈表的布局效果:
class LayoutIndividual:
def __init__(self, length, width):
self.length = length
self.width = width
self.fitness = []
def evaluate_fitness(self):
# 計算適應度
self.fitness = [self.length, self.width]
def dominates(self, other):
# 判斷支配關係
return self.length <= other.length and self.width <= other.width and (self.length < other.length or self.width < other.width)
def layout_optimization(objective_functions, max_generations):
# 初始化種群
population = [LayoutIndividual(randint(1, 10), randint(1, 10)) for i in range(30)]
for gen in range(max_generations):
# 計算適應度
for individual in population:
individual.evaluate_fitness()
# 對種群進行非支配排序和擁擠度排序
fronts = non_dominated_sorting(population)
for i, front in enumerate(fronts):
crowding_distance_assignment(front)
for j, individual in enumerate(front):
individual.rank = i
individual.distance = individual.crowding_distance
# 選擇下一代種群
next_population = []
for i in range(30):
p1 = random.choice(population)
p2 = random.choice(population)
child = LayoutIndividual(p1.length, p2.width)
next_population.append(child)
population = next_population
return population
原創文章,作者:GSCNC,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/335008.html
微信掃一掃
支付寶掃一掃