一、NSGA演算法簡介
非支配排序遺傳演算法(Non-dominated Sorting Genetic Algorithm,NSGA)是將遺傳演算法的種群個體按照它們的優先順序進行分類排序,使得較優的個體能夠被更好地保存下來,同時保留種群中的多樣性。它首先通過非支配排序將種群分為多個層級,然後在每一層級中根據擁擠度演算法對個體進行排序,以維護每一個層級中的多樣性。
下面是一段使用NSGA演算法進行多目標優化的Python示例代碼:
def nsga(population, generations, crossover_rate, mutation_rate): for gen in range(generations): offspring = [] for i in range(len(population)): # 選擇兩個父代 parent1 = selection(population) parent2 = selection(population) # 對兩個父代進行雜交 child = crossover(parent1, parent2, crossover_rate) # 對後代進行變異操作 child = mutation(child, mutation_rate) # 將後代添加到下一代種群中 offspring.append(child) # 合併父代和後代種群 population = population + offspring # 對種群進行非支配排序和擁擠度排序 fronts = non_dominated_sorting(population) sorted_population = sort_by_crowding_distance(population, fronts) # 選擇下一代種群 population = sorted_population[:len(population)] return population
二、NSGA演算法的非支配排序
NSGA演算法的關鍵在於如何對種群進行非支配排序。給定一組個體,非支配排序將它們分為多個層級,每一層級中的個體都是相對於同一層級中的其他個體來說非支配的。具體步驟如下:
1、計算每一個個體的支配關係,即如果一個個體在某一個目標函數上比另一個個體更好,則該個體支配另一個個體。
2、根據支配關係得到第一層級中的非支配解集合,同時將支配第一層級中的個體進行標記。
3、重複地對每一層級進行處理,直到沒有非支配解為止。在處理每一層級時,需要將上一層級中所有被標記的個體排除,並將下一層級中所有新加入的非支配解通過擁擠度演算法進行排序,以避免個體聚攏。
下面是非支配排序的代碼實現:
def non_dominated_sorting(population): fronts = [] n = [0]*len(population) rank = [0]*len(population) S = [[] for i in range(len(population))] fronts.append([]) for p in range(len(population)): S[p] = [] n[p] = 0 for q in range(len(population)): if population[p].dominates(population[q]): S[p].append(q) elif population[q].dominates(population[p]): n[p] = n[p] + 1 if n[p] == 0: rank[p] = 0 fronts[0].append(p) i = 0 while len(fronts[i]) != 0: Q = [] for p in fronts[i]: for q in S[p]: n[q] = n[q] - 1 if n[q] == 0: rank[q] = i + 1 Q.append(q) i += 1 fronts.append(Q) return fronts[:-1]
三、NSGA演算法的擁擠度排序
在計算完每個個體的非支配級別之後,我們需要對每層內的個體進行排序,以便於選擇個體生成下一代種群。通常使用擁擠度距離來實現排序,擁擠度表示一個個體周圍有多少個個體與其距離相似。在選擇下一代種群時,我們希望不僅保留靠前的非支配解,還要儘可能多地保留多樣性。因此,當選擇靠前的非支配解時,我們傾向於選擇擁擠度高的個體,這些個體周圍有很多其他個體,說明它們距離其他個體比較遠,因此保留它們能夠維護多樣性。
下面是擁擠度排序的代碼實現:
def crowding_distance_assignment(population): n = len(population) for individual in population: individual.crowding_distance = 0 for m in range(len(population[0].fitness)): sorted_population = sorted(population, key=lambda x: x.fitness[m]) sorted_population[0].crowding_distance = sorted_population[n-1].crowding_distance = inf for i in range(1, n-1): sorted_population[i].crowding_distance += sorted_population[i+1].fitness[m] - sorted_population[i-1].fitness[m] for individual in population: individual.crowding_distance /= len(population)
四、NSGA演算法的應用舉例
下面是一段使用NSGA演算法進行多目標優化的Python示例代碼,通過調整鏈表的長度和寬度來優化鏈表的布局效果:
class LayoutIndividual: def __init__(self, length, width): self.length = length self.width = width self.fitness = [] def evaluate_fitness(self): # 計算適應度 self.fitness = [self.length, self.width] def dominates(self, other): # 判斷支配關係 return self.length <= other.length and self.width <= other.width and (self.length < other.length or self.width < other.width) def layout_optimization(objective_functions, max_generations): # 初始化種群 population = [LayoutIndividual(randint(1, 10), randint(1, 10)) for i in range(30)] for gen in range(max_generations): # 計算適應度 for individual in population: individual.evaluate_fitness() # 對種群進行非支配排序和擁擠度排序 fronts = non_dominated_sorting(population) for i, front in enumerate(fronts): crowding_distance_assignment(front) for j, individual in enumerate(front): individual.rank = i individual.distance = individual.crowding_distance # 選擇下一代種群 next_population = [] for i in range(30): p1 = random.choice(population) p2 = random.choice(population) child = LayoutIndividual(p1.length, p2.width) next_population.append(child) population = next_population return population
原創文章,作者:GSCNC,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/335008.html