本文目錄一覽:
如何利用python爬蟲獲取數據
python是一款應用非常廣泛的腳本程序語言,谷歌公司的網頁就是用python編寫。python在生物信息、統計、網頁製作、計算等多個領域都體現出了強大的功能。python和其他腳本語言如java、R、Perl一樣,都可以直接在命令行里運行腳本程序。工具/原料python;CMD命令行;windows操作系統方法/步驟1、首先下載安裝python,建議安裝2.7版本以上,3.0版本以下,由於3.0版本以上不向下兼容,體驗較差。2、打開文本編輯器,推薦editplus,notepad等,將文件保存成.py格式,editplus和notepad支持識別python語法。腳本第一行一定要寫上#!usr/bin/python表示該腳本文件是可執行python腳本如果python目錄不在usr/bin目錄下,則替換成當前python執行程序的目錄。3、編寫完腳本之後注意調試、可以直接用editplus調試。調試方法可自行百度。腳本寫完之後,打開CMD命令行,前提是python已經被加入到環境變數中,如果沒有加入到環境變數,請百度4、在CMD命令行中,輸入「python」+「空格」,即」python「;將已經寫好的腳本文件拖拽到當前游標位置,然後敲回車運行即可。
怎麼用python爬取相關數據
以下代碼運行通過:
import requests
from bs4 import BeautifulSoup
import os
headers = {
‘User-Agent’: “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) “
“Chrome/22.0.1207.1 Safari/537.1”}
## 瀏覽器請求頭(大部分網站沒有這個請求頭會報錯)
all_url = ”
start_html = requests.get(all_url, headers=headers)
## 使用 requests 中的 get 方法來獲取 all_url 的內容 headers 為請求頭
print(start_html.text)
## 列印 start_html
## concent 是二進位的數據,下載圖片、視頻、音頻、等多媒體內容時使用 concent
## 列印網頁內容時使用 text
運行效果:
如何使用python爬取知乎數據並做簡單分析
一、使用的技術棧:
爬蟲:python27 +requests+json+bs4+time
分析工具: ELK套件
開發工具:pycharm
數據成果簡單的可視化分析
1.性別分布
0 綠色代表的是男性 ^ . ^
1 代表的是女性
-1 性別不確定
可見知乎的用戶男性頗多。
二、粉絲最多的top30
粉絲最多的前三十名:依次是張佳瑋、李開復、黃繼新等等,去知乎上查這些人,也差不多這個排名,說明爬取的數據具有一定的說服力。
三、寫文章最多的top30
四、爬蟲架構
爬蟲架構圖如下:
說明:
選擇一個活躍的用戶(比如李開復)的url作為入口url.並將已爬取的url存在set中。
抓取內容,並解析該用戶的關注的用戶的列表url,添加這些url到另一個set中,並用已爬取的url作為過濾。
解析該用戶的個人信息,並存取到本地磁碟。
logstash取實時的獲取本地磁碟的用戶數據,並給elsticsearchkibana和elasticsearch配合,將數據轉換成用戶友好的可視化圖形。
五、編碼
爬取一個url:
解析內容:
存本地文件:
代碼說明:
* 需要修改獲取requests請求頭的authorization。
* 需要修改你的文件存儲路徑。
源碼下載:點擊這裡,記得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何獲取authorization
打開chorme,打開https : // www. zhihu .com/,
登陸,首頁隨便找個用戶,進入他的個人主頁,F12(或滑鼠右鍵,點檢查)七、可改進的地方
可增加線程池,提高爬蟲效率
存儲url的時候我才用的set(),並且採用緩存策略,最多只存2000個url,防止內存不夠,其實可以存在redis中。
存儲爬取後的用戶我說採取的是本地文件的方式,更好的方式應該是存在mongodb中。
對爬取的用戶應該有一個信息的過濾,比如用戶的粉絲數需要大與100或者參與話題數大於10等才存儲。防止抓取了過多的殭屍用戶。
八、關於ELK套件
關於elk的套件安裝就不討論了,具體見官網就行了。網站:https : // www . elastic . co/另外logstash的配置文件如下:
從爬取的用戶數據可分析的地方很多,比如地域、學歷、年齡等等,我就不一一列舉了。另外,我覺得爬蟲是一件非常有意思的事情,在這個內容消費升級的年代,如何在廣闊的互聯網的數據海洋中挖掘有價值的數據,是一件值得思考和需不斷踐行的事情。
原創文章,作者:SABHT,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/317273.html