一、深度殘差網路全稱
深度殘差網路全稱Residual Network,簡稱ResNet。
二、深度殘差網路對面部識別的應用
深度殘差網路被廣泛應用於面部識別,可以在面部表情變化、面部照明變化等情況下提高識別精度。
下面是一個基於Python和OpenCV的面部識別應用的示例代碼:
import cv2 import numpy as np import tensorflow as tf from keras.models import Model from keras.layers import Input, Dense, Conv2D, MaxPooling2D, Dropout, Flatten from keras.applications.resnet50 import ResNet50 # 載入已經訓練好的殘差網路模型 model = ResNet50(weights='imagenet', include_top=False) # 聲明模型輸入和輸出 input_layer = Input(shape=(224, 224, 3)) x = model(input_layer) x = Flatten()(x) output_layer = Dense(128, activation='softmax')(x) # 構建新的模型,並載入已訓練模型的權重 new_model = Model(inputs=input_layer, outputs=output_layer) new_model.load_weights('resnet50_face_recognition.h5') # 讀入測試圖像 img = cv2.imread('test_img.jpg') img = cv2.resize(img, (224, 224)) img = np.array(img, dtype='float32') img /= 255. img = np.expand_dims(img, axis=0) # 模型預測 preds = new_model.predict(img)
三、深度殘差網路的優勢
相比於傳統的神經網路,在訓練多層神經網路時,會遇到梯度消失或梯度爆炸的問題,使得網路的訓練變得異常困難。這是由於該問題的存在使得層數過多的神經網路很難訓練。深度殘差網路通過引入殘差塊的方式,可以避免這個問題的發生,提高了模型的訓練效率和精度。
下面是一個使用深度殘差網路進行圖像分類的示例代碼:
from keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, Flatten, Dense from keras.models import Model def residual_block(x, filters): # 定義殘差塊 res = x x = Conv2D(filters, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Add()([x, res]) x = Activation('relu')(x) return x input_layer = Input(shape=(224, 224, 3)) x = Conv2D(64, (7, 7), strides=(2, 2), padding='same')(input_layer) x = BatchNormalization()(x) x = Activation('relu')(x) x = residual_block(x, filters=64) x = residual_block(x, filters=64) x = residual_block(x, filters=64) x = Conv2D(128, (3, 3), strides=(2, 2), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = residual_block(x, filters=128) x = residual_block(x, filters=128) x = residual_block(x, filters=128) x = Conv2D(256, (3, 3), strides=(2, 2), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = residual_block(x, filters=256) x = residual_block(x, filters=256) x = residual_block(x, filters=256) x = Conv2D(512, (3, 3), strides=(2, 2), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = residual_block(x, filters=512) x = residual_block(x, filters=512) x = residual_block(x, filters=512) x = Flatten()(x) output_layer = Dense(1000, activation='softmax')(x) model = Model(inputs=input_layer, outputs=output_layer)
四、深度殘差網路預測下一個詞
深度殘差網路可用於自然語言處理的方向,如預測下一個詞的出現概率。
下面是一個使用深度殘差網路進行自然語言處理的示例代碼:
from keras import layers, Input from keras.layers import Embedding, LSTM, Dense, Dropout from keras.models import Model # 定義輸入序列 input_seq = Input(shape=(max_len,)) x = Embedding(input_dim=vocab_size, output_dim=embedding_size, input_length=max_len)(input_seq) # 定義殘差塊 residual = LSTM(units=num_hidden, return_sequences=True)(x) residual = Dropout(dropout_rate)(residual) residual = LSTM(units=num_hidden, return_sequences=True)(residual) residual = Dropout(dropout_rate)(residual) # 定義主幹網路 x = LSTM(units=num_hidden, return_sequences=True)(x) x = layers.add([x, residual]) # 定義輸出層和模型 x = Dense(units=vocab_size, activation='softmax')(x) model = Model(inputs=input_seq, outputs=x)
五、深度殘差網路提出者
深度殘差網路由何凱明等人於2015年提出。
六、深度殘差網路英文
深度殘差網路的英文名稱為Residual Network或ResNet。
七、深度殘差網路是什麼
深度殘差網路是一種多層神經網路模型,通過引入殘差塊來避免梯度消失或梯度爆炸的問題,從而提高了模型的訓練效率和精度。
八、深度殘差網路結構
深度殘差網路的基本結構是由多個殘差塊(Residual Block)組成的,每個殘差塊由兩個或多個卷積層和一個跳躍連接組成,可參考第三個小標題的示例代碼。
九、深度殘差網路圖像去噪
深度殘差網路可用於圖像去噪方向,可以有效地去除圖像中的雜訊。
下面是一個使用深度殘差網路進行圖像去噪的示例代碼:
from keras.layers import Conv2D, BatchNormalization, Activation, Input, Add, Lambda from keras.models import Model def residual_block(x): # 定義殘差塊 res = x x = Conv2D(64, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(64, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Add()([x, res]) x = Activation('relu')(x) return x input_layer = Input(shape=(256, 256, 3)) x = Lambda(lambda x: x / 255.)(input_layer) x = Conv2D(64, (3, 3), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) x = Conv2D(3, (3, 3), padding='same')(x) output_layer = Lambda(lambda x: x * 255.)(x) model = Model(inputs=input_layer, outputs=output_layer)
十、深度殘差網路和卷積神經網路
深度殘差網路是卷積神經網路的一種擴展,通過引入殘差塊來提高模型效率。
原創文章,作者:TNDUP,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/316138.html