python爬蟲信息檢索,python數據採集 爬蟲

本文目錄一覽:

如何用python 爬蟲抓取金融數據

獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。

本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。

一、網頁源碼的獲取

很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。

import urllib.request

url=’ar.com/stock/ranklist_a_3_1_1.html’  #目標網址headers={“User-Agent”:”Mozilla/5.0 (Windows NT 10.0; WOW64)”}  #偽裝瀏覽器請求報頭request=urllib.request.Request(url=url,headers=headers)  #請求伺服器response=urllib.request.urlopen(request)  #伺服器應答content=response.read().decode(‘gbk’)   #以一定的編碼方式查看源碼print(content)  #列印頁面源碼

雖說抓一頁的源碼容易,不過在一個網站內大量抓取網頁源碼卻經常遭到伺服器攔截,頓時感覺世界充滿了惡意。於是我開始研習突破反爬蟲限制的功法。

1.偽裝流浪器報頭

很多伺服器通過瀏覽器發給它的報頭來確認是否是人類用戶,所以我們可以通過模仿瀏覽器的行為構造請求報頭給伺服器發送請求。伺服器會識別其中的一些參數來識別你是否是人類用戶,很多網站都會識別User-Agent這個參數,所以請求頭最好帶上。有一些警覺性比較高的網站可能還會通過其他參數識別,比如通過Accept-Language來辨別你是否是人類用戶,一些有防盜鏈功能的網站還得帶上referer這個參數等等。

2.隨機生成UA

證券之星只需帶User-Agent這個參數就可以抓取頁面信息了,不過連續抓取幾頁就被伺服器阻止了。於是我決定每次抓取數據時模擬不同的瀏覽器發送請求,而伺服器通過User-Agent來識別不同瀏覽器,所以每次爬取頁面可以通過隨機生成不同的UA構造報頭去請求伺服器,

3.減慢爬取速度

雖然模擬了不同瀏覽器爬取數據,但發現有的時間段可以爬取上百頁的數據,有時候卻只能爬取十來頁,看來伺服器還會根據你的訪問的頻率來識別你是人類用戶還是網路爬蟲。所以我每抓取一頁都讓它隨機休息幾秒,加入此句代碼後,每個時間段都能爬取大量股票數據了。

4.使用代理IP

天有不測風雲,程序在公司時順利測試成功,回寢室後發現又只能抓取幾頁就被伺服器阻止了。驚慌失措的我趕緊詢問度娘,獲知伺服器可以識別你的IP,並記錄此IP訪問的次數,可以使用高匿的代理IP,並在抓取的過程中不斷的更換,讓伺服器無法找出誰是真兇。此功還未修成,欲知後事如何,請聽下回分解。

5.其他突破反爬蟲限制的方法

很多伺服器在接受瀏覽器請求時會發送一個cookie文件給瀏覽器,然後通過cookie來跟蹤你的訪問過程,為了不讓伺服器識別出你是爬蟲,建議最好帶上cookie一起去爬取數據;如果遇上要模擬登陸的網站,為了不讓自己的賬號被拉黑,可以申請大量的賬號,然後再爬入,此處涉及模擬登陸、驗證碼識別等知識,暫時不再深究…總之,對於網站主人來說,有些爬蟲確實是令人討厭的,所以會想出很多方法限制爬蟲的進入,所以我們在強行進入之後也得注意些禮儀,別把人家的網站給拖垮了。

二、所需內容的提取

獲取網頁源碼後,我們就可以從中提取我們所需要的數據了。從源碼中獲取所需信息的方法有很多,使用正則表達式就是比較經典的方法之一。我們先來看所採集網頁源碼的部分內容。

為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。

pattern=re.compile(‘tbody[\s\S]*/tbody’)  

body=re.findall(pattern,str(content))  #匹配tbody和/tbody之間的所有代碼pattern=re.compile(‘(.*?)’)

stock_page=re.findall(pattern,body[0])  #匹配和之間的所有信息

其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。

語法    說明  

.    匹配任意除換行符「\n」外的字元  

*    匹配前一個字元0次或無限次  

?    匹配前一個字元0次或一次  

\s    空白字元:[空格\t\r\n\f\v]  

\S    非空白字元:[^\s]  

[…]    字符集,對應的位置可以是字符集中任意字元  

(…)    被括起來的表達式將作為分組,裡面一般為我們所需提取的內容  

正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。

三、所得結果的整理

通過非貪婪模式(.*?)匹配和之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。

stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total:  #stock_last:整理後的股票數據

if data==”:

stock_last.remove(”)

最後,我們可以列印幾列數據看下效果,代碼如下

print(‘代碼’,’\t’,’簡稱’,’   ‘,’\t’,’最新價’,’\t’,’漲跌幅’,’\t’,’漲跌額’,’\t’,’5分鐘漲幅’)for i in range(0,len(stock_last),13):        #網頁總共有13列數據

print(stock_last[i],’\t’,stock_last[i+1],’ ‘,’\t’,stock_last[i+2],’  ‘,’\t’,stock_last[i+3],’  ‘,’\t’,stock_last[i+4],’  ‘,’\t’,stock_last[i+5])

如何入門 Python 爬蟲?

「入門」是良好的動機,但是可能作用緩慢。如果你手裡或者腦子裡有一個項目,那麼實踐起來你會被目標驅動,而不會像學習模塊一樣慢慢學習。

如果你想要入門Python爬蟲,你需要做很多準備。首先是熟悉python編程;其次是了解HTML;

還要了解網路爬蟲的基本原理;最後是學習使用python爬蟲庫。

如果你不懂python,那麼需要先學習python這門非常easy的語言。編程語言基礎語法無非是數據類型、數據結構、運算符、邏輯結構、函數、文件IO、錯誤處理這些,學起來會顯枯燥但並不難。

剛開始入門爬蟲,你甚至不需要去學習python的類、多線程、模塊之類的略難內容。找一個面向初學者的教材或者網路教程,花個十幾天功夫,就能對python基礎有個三四分的認識了。

網路爬蟲的含義:

網路爬蟲,其實也可以叫做網路數據採集更容易理解。就是通過編程向網路伺服器請求數據(HTML表單),然後解析HTML,提取出自己想要的數據。

這會涉及到資料庫、網路伺服器、HTTP協議、HTML、數據科學、網路安全、圖像處理等非常多的內容。但對於初學者而言,並不需要掌握這麼多。

python爬蟲是幹嘛的

爬蟲技術是一種自動化程序。

爬蟲就是一種可以從網頁上抓取數據信息並保存的自動化程序,它的原理就是模擬瀏覽器發送網路請求,接受請求響應,然後按照一定的規則自動抓取互聯網數據。

搜索引擎通過這些爬蟲從一個網站爬到另一個網站,跟蹤網頁中的鏈接,訪問更多的網頁,這個過程稱為爬行,這些新的網址會被存入資料庫等待搜索。簡而言之,爬蟲就是通過不間斷地訪問互聯網,然後從中獲取你指定的信息並返回給你。而我們的互聯網上,隨時都有無數的爬蟲在爬取數據,並返回給使用者。

爬蟲技術的功能

1、獲取網頁

獲取網頁可以簡單理解為向網頁的伺服器發送網路請求,然後伺服器返回給我們網頁的源代碼,其中通信的底層原理較為複雜,而Python給我們封裝好了urllib庫和requests庫等,這些庫可以讓我們非常簡單的發送各種形式的請求。

2、提取信息

獲取到的網頁源碼內包含了很多信息,想要進提取到我們需要的信息,則需要對源碼還要做進一步篩選。可以選用python中的re庫即通過正則匹配的形式去提取信息,也可以採用BeautifulSoup庫(bs4)等解析源代碼,除了有自動編碼的優勢之外,bs4庫還可以結構化輸出源代碼信息,更易於理解與使用。

3、保存數據

提取到我們需要的有用信息後,需要在Python中把它們保存下來。可以使用通過內置函數open保存為文本數據,也可以用第三方庫保存為其它形式的數據,例如可以通過pandas庫保存為常見的xlsx數據,如果有圖片等非結構化數據還可以通過pymongo庫保存至非結構化資料庫中。

如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子裡是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?

很簡單

import Queue

initial_page = “初始化頁”

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛

if url_queue.size()0:

current_url = url_queue.get() #拿出隊例中第一個的url

store(current_url) #把這個url代表的網頁存儲好

for next_url in extract_urls(current_url): #提取把這個url里鏈向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這裡,下面分析一下為什麼爬蟲事實上是個非常複雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率

如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的複雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的複雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這裡的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重複看一看(沒關係,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取

爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分散式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:

在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分散式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = “”

while(True):

if request == ‘GET’:

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == ‘POST’:

bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理

雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這裡指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…

及時更新(預測這個網頁多久會更新一次)

如你所想,這裡每一個點都可以供很多研究者十數年的研究。雖然如此,

「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

python的爬蟲是什麼意思

Python爬蟲即使用Python程序開發的網路爬蟲(網頁蜘蛛,網路機器人),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。其實通俗的講就是通過程序去獲取 web 頁面上自己想要的數據,也就是自動抓取數據。網路爬蟲(英語:web crawler),也叫網路蜘蛛(spider),是一種用來自動瀏覽萬維網的網路機器人。其目的一般為編纂網路索引。

網路搜索引擎等站點通過爬蟲軟體更新自身的網站內容或其對其他網站的索引。網路爬蟲可以將自己所訪問的頁面保存下來,以便搜索引擎事後生成索引供用戶搜索。

爬蟲訪問網站的過程會消耗目標系統資源。不少網路系統並不默許爬蟲工作。因此在訪問大量頁面時,爬蟲需要考慮到規劃、負載,還需要講「禮貌」。 不願意被爬蟲訪問、被爬蟲主人知曉的公開站點可以使用robots.txt文件之類的方法避免訪問。這個文件可以要求機器人只對網站的一部分進行索引,或完全不作處理。

互聯網上的頁面極多,即使是最大的爬蟲系統也無法做出完整的索引。因此在公元2000年之前的萬維網出現初期,搜索引擎經常找不到多少相關結果。現在的搜索引擎在這方面已經進步很多,能夠即刻給出高質量結果。

爬蟲還可以驗證超鏈接和HTML代碼,用於網路抓取。

Python 爬蟲

Python 爬蟲架構

Python 爬蟲架構主要由五個部分組成,分別是調度器、URL 管理器、網頁下載器、網頁解析器、應用程序(爬取的有價值數據)。

調度器:相當於一台電腦的 CPU,主要負責調度 URL 管理器、下載器、解析器之間的協調工作。

URL 管理器:包括待爬取的 URL 地址和已爬取的 URL 地址,防止重複抓取 URL 和循環抓取 URL,實現 URL 管理器主要用三種方式,通過內存、資料庫、緩存資料庫來實現。

網頁下載器:通過傳入一個 URL 地址來下載網頁,將網頁轉換成一個字元串,網頁下載器有 urlpb2(Python 官方基礎模塊)包括需要登錄、代理、和 cookie,requests(第三方包)

網頁解析器:將一個網頁字元串進行解析,可以按照我們的要求來提取出我們有用的信息,也可以根據 DOM 樹的解析方式來解析。網頁解析器有正則表達式(直觀,將網頁轉成字元串通過模糊匹配的方式來提取有價值的信息,當文檔比較複雜的時候,該方法提取數據的時候就會非常的困難)、html.parser(Python 自帶的)、beautifulsoup(第三方插件,可以使用 Python 自帶的 html.parser 進行解析,也可以使用 lxml 進行解析,相對於其他幾種來說要強大一些)、lxml(第三方插件,可以解析 xml 和 HTML),html.parser 和 beautifulsoup 以及 lxml 都是以 DOM 樹的方式進行解析的。

應用程序:就是從網頁中提取的有用數據組成的一個應用。

爬蟲可以做什麼?

你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。

爬蟲的本質是什麼?

模擬瀏覽器打開網頁,獲取網頁中我們想要的那部分數據

瀏覽器打開網頁的過程:

當你在瀏覽器中輸入地址後,經過 DNS 伺服器找到伺服器主機,向伺服器發送一個請求,伺服器經過解析後發送給用戶瀏覽器結果,包括 html,js,css 等文件內容,瀏覽器解析出來最後呈現給用戶在瀏覽器上看到的結果

所以用戶看到的瀏覽器的結果就是由 HTML 代碼構成的,我們爬蟲就是為了獲取這些內容,通過分析和過濾 html 代碼,從中獲取我們想要資源。

相關推薦:《Python教程》以上就是小編分享的關於python的爬蟲是什麼意思的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/309497.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2025-01-04 19:31
下一篇 2025-01-04 19:31

相關推薦

  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智慧、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29

發表回復

登錄後才能評論