用於python的任務隊列(隊列 python)

本文目錄一覽:

如何用python簡單的設計開發非同步任務調度隊列

首先,客戶端可以直接扔任務到一個web services的介面上 –》 web api接收到任務後,會根據客戶端的ip和時間戳做task_id,返回給客戶,緊接著在redis裡面標記這任務的狀態。 格式為 func,args,kwargs,timeout=xx,queue_level=xx,interval_time=xx

主服務端:

一個線程,會不停的掃描那個redis hash表,取出任務的interval_time後,進行取模,如果匹配成功,就會塞到 redis sorted set有續集和裡面。

主線程,會不停的看看sorted set裡面,有沒有比自己實現小的任務,有的話,執行並刪除。 這裡的執行是用多進程,為毛用多進程,因為線程很多時候是不好控制強制幹掉的。 每個任務都會用multiprocessing的方式去執行,去調用的時候,會多傳進一個task_id,用來把相關的進度推送到redis裡面。 另外,fork進程後,我會得到一個pid,我會把pid和timeout的信息,存放到kill_hash裡面。 然後會不間斷的查看,在指定的timeout內,這pid還在不在,如果還是存在,沒有退出的話,說明他的任務不太正常,我們就可以在main(),裡面幹掉這些任務。

所謂的優先順序就是個 High + middle +Low 的三合一鏈條而已,我每次都會堅持從高到低取任務,如果你的High級別的任務不斷的話,那麼我會一直幹不了低級別的任務了。 代碼的體現是在redis sorted set這邊,設立三個有序集合,我的worker隊列會從high開始做……

那麼如果想幹掉一個任務是如何操作的,首先我需要在 kill_hash 裡面標記任務應該趕緊幹掉,在就是在task_hash裡面把那個task_id幹掉,好讓他不會被持續的加入待執行的隊列裡面。

python多任務之進程隊列queen

python的多進程之間無法用全局變數,需要只用隊列queen進行通訊。

1. 創建。q=multiprocessing.Queen(num),num最大存放多少數據

2.進程使用隊列,需要在創建進程時做為參數傳進去。p=multiprocessing.Process(target=fun_name,args=(q,))

3.隊列使用。隊列是先進先出的,p.put(任何數據類型),放進數據,當隊列滿時會進程會堵塞等待。p.get()取出數據,當隊列中無數據是,進程會堵塞等待。p.full()是否已滿,p.empty()是否空了。

Python實現簡單多線程任務隊列

Python實現簡單多線程任務隊列

最近我在用梯度下降演算法繪製神經網路的數據時,遇到了一些演算法性能的問題。梯度下降演算法的代碼如下(偽代碼):

defgradient_descent(): # the gradient descent code plotly.write(X, Y)

一般來說,當網路請求 plot.ly 繪圖時會阻塞等待返回,於是也會影響到其他的梯度下降函數的執行速度。

一種解決辦法是每調用一次 plotly.write 函數就開啟一個新的線程,但是這種方法感覺不是很好。 我不想用一個像 cerely(一種分散式任務隊列)一樣大而全的任務隊列框架,因為框架對於我的這點需求來說太重了,並且我的繪圖也並不需要 redis 來持久化數據。

那用什麼辦法解決呢?我在 python 中寫了一個很小的任務隊列,它可以在一個單獨的線程中調用 plotly.write函數。下面是程序代碼。

fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue):

首先我們繼承 Queue.Queue 類。從 Queue.Queue 類可以繼承 get 和 put 方法,以及隊列的行為。

def__init__(self, num_workers=1): Queue.Queue.__init__(self) self.num_workers=num_workers self.start_workers()

初始化的時候,我們可以不用考慮工作線程的數量。

defadd_task(self, task,*args,**kwargs): args=argsor() kwargs=kwargsor{} self.put((task, args, kwargs))

我們把 task, args, kwargs 以元組的形式存儲在隊列中。*args 可以傳遞數量不等的參數,**kwargs 可以傳遞命名參數。

defstart_workers(self): foriinrange(self.num_workers): t=Thread(target=self.worker) t.daemon=True t.start()

我們為每個 worker 創建一個線程,然後在後台刪除。

下面是 worker 函數的代碼:

defworker(self): whileTrue: tupl=self.get() item, args, kwargs=self.get() item(*args,**kwargs) self.task_done()

worker 函數獲取隊列頂端的任務,並根據輸入參數運行,除此之外,沒有其他的功能。下面是隊列的代碼:

我們可以通過下面的代碼測試:

defblokkah(*args,**kwargs): time.sleep(5) print「Blokkah mofo!」 q=TaskQueue(num_workers=5) foriteminrange(1): q.add_task(blokkah) q.join()# wait for all the tasks to finish. print「Alldone!」

Blokkah 是我們要做的任務名稱。隊列已經緩存在內存中,並且沒有執行很多任務。下面的步驟是把主隊列當做單獨的進程來運行,這樣主程序退出以及執行資料庫持久化時,隊列任務不會停止運行。但是這個例子很好地展示了如何從一個很簡單的小任務寫成像工作隊列這樣複雜的程序。

defgradient_descent(): # the gradient descent code queue.add_task(plotly.write, x=X, y=Y)

修改之後,我的梯度下降演算法工作效率似乎更高了。如果你很感興趣的話,可以參考下面的代碼。fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print”Blokkah mofo!” q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint”All done!” if__name__==”__main__”:tests()

Python 非同步任務隊列Celery 使用

在 Python 中定義 Celery 的時候,我們要引入 Broker,中文翻譯過來就是「中間人」的意思。在工頭(生產者)提出任務的時候,把所有的任務放到 Broker 裡面,在 Broker 的另外一頭,一群碼農(消費者)等著取出一個個任務準備著手做。這種模式註定了整個系統會是個開環系統,工頭對於碼農們把任務做的怎樣是不知情的。所以我們要引入 Backend 來保存每次任務的結果。這個 Backend 也是存儲任務的信息用的,只不過這裡存的是那些任務的返回結果。我們可以選擇只讓錯誤執行的任務返回結果到 Backend,這樣我們取回結果,便可以知道有多少任務執行失敗了。

其實現架構如下圖所示:

可以看到,Celery 主要包含以下幾個模塊:

celery可以通過pip自動安裝。

broker 可選擇使用RabbitMQ/redis,backend可選擇使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安裝請參考對應的官方文檔。

——————————rabbitmq相關———————————————————-

官網安裝方法:

啟動管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 啟動rabbitmq:sbin/rabbitmq-server -detached

rabbitmq已經啟動,可以打開頁面來看看 地址:

用戶名密碼都是guest 。進入可以看到具體頁面。 關於rabbitmq的配置,網上很多 自己去搜以下就ok了。

——————————rabbitmq相關——————————————————–

項目結構如下:

使用前,需要三個方面:celery配置,celery實例,需執行的任務函數,如下:

Celery 的配置比較多,可以在 官方配置文檔: 查詢每個配置項的含義。

當然,要保證上述非同步任務and下述定時任務都能正常執行,就需要先啟動celery worker,啟動命令行如下:

需 啟動beat ,執行定時任務時, Celery會通過celery beat進程來完成。Celery beat會保持運行, 一旦到了某一定時任務需要執行時, Celery beat便將其加入到queue中. 不像worker進程, Celery beat只需要一個即可。而且為了避免有重複的任務被發送出去,所以Celery beat僅能有一個。

命令行啟動:

如果你想將celery worker/beat要放到後台運行,推薦可以扔給supervisor。

supervisor.conf如下:

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/308773.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2025-01-03 14:49
下一篇 2025-01-03 14:49

相關推薦

  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智慧、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29

發表回復

登錄後才能評論