關於如何使用深度學習在python的信息

本文目錄一覽:

深度學習 python怎麼入門 知乎

自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並紮實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的嚮導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元

大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。

《運用深度學習》

你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。

這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。

在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的複雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。

您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。

Python的深度神經網路

有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。

當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。

隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。

在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。

在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是複製粘貼任何東西。

代碼庫有點麻煩

並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。

在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。

這在後面的章節中會變得尤其困難,因為代碼會變得更長更複雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。

此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。

更廣闊的人工智慧圖景

Trask已經完成了一項偉大的工作,它彙集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。

但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。

關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。

你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。

你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。

AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。

《深度學習入門基於Python的理論與實現》pdf下載在線閱讀全文,求百度網盤雲資源

《深度學習入門基於Python的理論與實現》( [ 日] 齋藤康毅)電子書網盤下載免費在線閱讀

鏈接:

提取碼:ucbo  

書名:深度學習入門基於Python的理論與實現

豆瓣評分:9.4

作者: [ 日] 齋藤康毅

出版社: 人民郵電出版社

出版年: 2018-7

頁數: 285

內容簡介

本書是深度學習真正意義上的入門書,深入淺出地剖析了深度學習的原理和相關技術。書中使用Python3,盡量不依賴外部庫或工具,從基本的數學知識出發,帶領讀者從零創建一個經典的深度學習網路,使讀者在此過程中逐步理解深度學習。書中不僅介紹了深度學習和神經網路的概念、特徵等基礎知識,對誤差反向傳播法、卷積神經網路等也有深入講解,此外還介紹了深度學習相關的實用技巧,自動駕駛、圖像生成、強化學習等方面的應用,以及為什麼加深層可以提高識別精度等「為什麼」的問題。

作者簡介

齋藤康毅

東京工業大學畢業,並完成東京大學研究生院課程。現從事計算機視覺與機器學習相關的研究和開發工作。是Introducing Python、Python in Practice、The Elements of Computing Systems、Building Machine 

#Python乾貨#python實現——最優化演算法

函數詳見rres,此代碼使該演算法運行了兩次

收穫:

這是我第一個實現的代碼。學習完該演算法以後,邏輯框架基本上就有了,剩下需要明確的就是對應的python的語言。於是我就開始了查找「如何定義函數」(詳見mofan的優酷),「循環體」和「if條件語句」的格式()「數學符號」(詳見mofan的優酷),以及print的使用

1.def是python中指定義,一般用來定義函數,如果需要深度學習搭建網路可用來定義網路。值得注意的一點是

我不清楚為什麼,但是如果沒有加的話,那個函數公式就是一個花瓶,就像一個結果輸不出去。

2.最坑的就是邏輯。一開始邏輯沒理清楚,或者說在代碼上有疏漏,導致我將left和right放在了循環體里,結果可想而知。不過也是因為這個錯誤,我知道pycharm中的debug怎麼用,挺簡單的,百度一下就出來了。

3.不知道什麼原因,看的莫煩視頻中的print多個變數一起輸出是沒有辦法在我的pycharm中使用的,出來的結果很奇怪。可能是因為我是win10不是ios吧。print如果多個變數一起輸出必須是print(“名字:%s,名字2:%s”%(a,b))結果輸出就是名字:a ,名字2:b

關於python中數據變數。第一遍運行結果出現很明顯不對,於是我採用了debug。結果發現,mid1處一直為1而不是1.5,於是就開始了解數據變數。起初我猜測python默認所有變數為整型,但是根據二分法的結果我意識到此猜測不對,所以要改整個file的變數格式沒有必要。所以我就在mid1式子前面加了一個float,結果就顯示為1.5了。但是如果我將整個式子用()括起來,前面加float,結果還是1。我不太理解為什麼。不過我知道了python的數據格式是根據輸入量決定的,也就是說你的輸入量如果是整型,那麼與其直接相關的計算輸出結果一定是整型,而且還是不採用進位的整型。在我沒有採用+float/+.0這兩種方法之前,mid1~3全部是整型。

或者不再mid1前面加float,直接將輸入量後面點個點就行

真的很想吐槽一下print,好麻煩啊啊啊啊每次都得弄個%s,而且有時候還不能放一起!!!!

不要問我掌握了什麼,要問我現在寫完這個代碼後有多麼的愛python的精度表示 :-)我決定以後只要再編寫數學公式的代碼都將輸入量的小數學點後面補很多0

fibonacci函數定義,每次debug後我的手都是抖的O( _ )O~

不知道自己什麼時候有的強迫症,只要是代碼下面有「~」我就必須要消掉。笑哭。這個很簡單,前四個除了費波納茨,都很簡單。

這個公式看起來很麻煩,便寫的時候更要謹慎。我上回把那個2擱在了分號下面,結果很大,所以還是換算成0.5更好(PS:勿忘那長河般的0)。

雖然代碼很長,但是主要是因為print太多。本打算在開頭print,最後結果會漏掉最後一部分。懶得想其他辦法了,直接就這樣吧

一開始while裡面寫成了,導致run不出來。繼而,debug也沒法用。在網上一查才知道 「沒聯網」+「沒選斷點」。最後想嘗試將else裡面的內容輸出來,結果發現run以後被刷屏了。於是改成i7以後還是不行,於是想著加一個break跳出循環,結果成效了。

然後剛剛由debug了一下,才知道原來是i+1在if裡面,因為沒有辦法+1,所以i=6一直存在,就不斷循環。因為加break也好,i+1也好,都可以。

這是我第一組自己實現的python代碼,就是數學公式用python語言組裝起來。剛開始的時候知道大概需要在語言中體現什麼,但不太清楚。於是我就在網上找了幾個二分法的,他們都各有不同,但框架都差不多,不過如果要用到我們的那個公式里還需要改變很多。然後我就開始分析我們的題,我發現大體需要兩部分,一部分函數定義,一部分循環體。但我不知道如何定義函數,如何寫數學公式,如何弄變數,也就是說一些小點不太會,所以我選擇直接百度。因為我知道自己閱讀的能力不錯,相比於從視頻中提取要素,我更擅長通過閱讀獲得要點。有目的性地找知識點,掌握地更牢固。

於是我就開始了第一個——二分法的編寫。我發現,自己出現了很多錯誤而且有很多地方都很基礎。但我依然沒選擇視頻,而是將這些問題直接在百度上找,因為視頻講完或許你也沒找到點。當然,這是一步一步走的,不是直接就將程序擺上去,一點一點改。

隨著前兩個的成功,我發現自己對於這些代碼有了自信,似乎看透了他們的偽裝,抓住了本質。除此之外,我還意識到自己自從8月份以後,學習能力似乎提高了不少,而且有了更為有效的學習方法。各方面都有了一定的覺醒。除了第一個找了幾個牛頭不對馬嘴的代碼,其他都是根據自己的邏輯寫,邏輯通下來以後,對應語言中某一部分不知道如何翻譯就去百度,其實這幾個套路都一樣或者說數學公式轉化的套路都一樣。

我還意識到,彙編其實是最難的語言,目前為止所學到的,因為很多都需要自己去定義,去死摳,需要記住大量的指令且不能靈活變通。但是其他的卻只需要將一些對應的記下來就好。python真的挺簡單的。而且,我發現自己今天似乎打開了新世界的大門,我愛上了這種充滿了靈性的東西,充滿了嚴謹的美麗,還有那未知的變化,我發現我似乎愛上了代碼。可能不僅僅局限於python,這些語言都充滿了挑戰性。我覺得當你疑惑的時候,就需要相信直覺,至少我發現它很准

Python深度學習該怎麼學

按照下面的課程安排學習:

階段一:Python開發基礎

Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。

階段二:Python高級編程和資料庫開發

Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。

階段三:前端開發

Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquerybootstrap開發、前端框架VUE開發等。

階段四:WEB框架開發

Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。

階段五:爬蟲開發

Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。

階段六:全棧項目實戰

Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關係管理系統開發、路飛學城在線教育平台開發等。

階段七:演算法設計模式

階段八:數據分析

Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。

階段九:機器學習、圖像識別、NLP自然語言處理

Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、圖形識別、人工智慧玩具開發等。

階段十:Linux系統百萬級並發架構解決方案

階段十一:高並發語言GO開發

Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。

如何通過Python進行深度學習?

作者 | Vihar Kurama

編譯 | 荷葉

來源 | 雲棲社區

摘要:深度學習背後的主要原因是人工智慧應該從人腦中汲取靈感。本文就用一個小例子無死角的介紹一下深度學習!

人腦模擬

深度學習背後的主要原因是人工智慧應該從人腦中汲取靈感。此觀點引出了「神經網路」這一術語。人腦中包含數十億個神經元,它們之間有數萬個連接。很多情況下,深度學習演算法和人腦相似,因為人腦和深度學習模型都擁有大量的編譯單元(神經元),這些編譯單元(神經元)在獨立的情況下都不太智能,但是當他們相互作用時就會變得智能。

我認為人們需要了解到深度學習正在使得很多幕後的事物變得更好。深度學習已經應用於谷歌搜索和圖像搜索,你可以通過它搜索像「擁抱」這樣的詞語以獲得相應的圖像。-傑弗里·辛頓

神經元

神經網路的基本構建模塊是人工神經元,它模仿了人類大腦的神經元。這些神經元是簡單、強大的計算單元,擁有加權輸入信號並且使用激活函數產生輸出信號。這些神經元分布在神經網路的幾個層中。

inputs 輸入 outputs 輸出 weights 權值 activation 激活

人工神經網路的工作原理是什麼?

深度學習由人工神經網路構成,該網路模擬了人腦中類似的網路。當數據穿過這個人工網路時,每一層都會處理這個數據的一方面,過濾掉異常值,辨認出熟悉的實體,併產生最終輸出。

輸入層:該層由神經元組成,這些神經元只接收輸入信息並將它傳遞到其他層。輸入層的圖層數應等於數據集里的屬性或要素的數量。輸出層:輸出層具有預測性,其主要取決於你所構建的模型類型。隱含層:隱含層處於輸入層和輸出層之間,以模型類型為基礎。隱含層包含大量的神經元。處於隱含層的神經元會先轉化輸入信息,再將它們傳遞出去。隨著網路受訓練,權重得到更新,從而使其更具前瞻性。

神經元的權重

權重是指兩個神經元之間的連接的強度或幅度。你如果熟悉線性回歸的話,可以將輸入的權重類比為我們在回歸方程中用的係數。權重通常被初始化為小的隨機數值,比如數值0-1。

前饋深度網路

前饋監督神經網路曾是第一個也是最成功的學習演算法。該網路也可被稱為深度網路、多層感知機(MLP)或簡單神經網路,並且闡明了具有單一隱含層的原始架構。每個神經元通過某個權重和另一個神經元相關聯。

該網路處理向前處理輸入信息,激活神經元,最終產生輸出值。在此網路中,這稱為前向傳遞。

inputlayer 輸入層 hidden layer 輸出層 output layer 輸出層

激活函數

激活函數就是求和加權的輸入到神經元的輸出的映射。之所以稱之為激活函數或傳遞函數是因為它控制著激活神經元的初始值和輸出信號的強度。

用數學表示為:

我們有許多激活函數,其中使用最多的是整流線性單元函數、雙曲正切函數和solfPlus函數。

激活函數的速查表如下:

反向傳播

在網路中,我們將預測值與預期輸出值相比較,並使用函數計算其誤差。然後,這個誤差會傳回這個網路,每次傳回一個層,權重也會根絕其導致的誤差值進行更新。這個聰明的數學法是反向傳播演算法。這個步驟會在訓練數據的所有樣本中反覆進行,整個訓練數據集的網路更新一輪稱為一個時期。一個網路可受訓練數十、數百或數千個時期。

prediction error 預測誤差

代價函數和梯度下降

代價函數度量了神經網路對給定的訓練輸入和預期輸出「有多好」。該函數可能取決於權重、偏差等屬性。

代價函數是單值的,並不是一個向量,因為它從整體上評估神經網路的性能。在運用梯度下降最優演算法時,權重在每個時期後都會得到增量式地更新。

兼容代價函數

用數學表述為差值平方和:

target 目標值 output 輸出值

權重更新的大小和方向是由在代價梯度的反向上採取步驟計算出的。

其中η 是學習率

其中Δw是包含每個權重係數w的權重更新的向量,其計算方式如下:

target 目標值 output 輸出值

圖表中會考慮到單係數的代價函數

initial weight 初始權重 gradient 梯度 global cost minimum 代價極小值

在導數達到最小誤差值之前,我們會一直計算梯度下降,並且每個步驟都會取決於斜率(梯度)的陡度。

多層感知器(前向傳播)

這類網路由多層神經元組成,通常這些神經元以前饋方式(向前傳播)相互連接。一層中的每個神經元可以直接連接後續層的神經元。在許多應用中,這些網路的單元會採用S型函數或整流線性單元(整流線性激活)函數作為激活函數。

現在想想看要找出處理次數這個問題,給定的賬戶和家庭成員作為輸入

要解決這個問題,首先,我們需要先創建一個前向傳播神經網路。我們的輸入層將是家庭成員和賬戶的數量,隱含層數為1, 輸出層將是處理次數。

將圖中輸入層到輸出層的給定權重作為輸入:家庭成員數為2、賬戶數為3。

現在將通過以下步驟使用前向傳播來計算隱含層(i,j)和輸出層(k)的值。

步驟:

1, 乘法-添加方法。

2, 點積(輸入*權重)。

3,一次一個數據點的前向傳播。

4, 輸出是該數據點的預測。

i的值將從相連接的神經元所對應的輸入值和權重中計算出來。

i = (2 * 1) + (3* 1) → i = 5

同樣地,j = (2 * -1) + (3 * 1) → j =1

K = (5 * 2) + (1* -1) → k = 9

Python中的多層感知器問題的解決

激活函數的使用

為了使神經網路達到其最大預測能力,我們需要在隱含層應用一個激活函數,以捕捉非線性。我們通過將值代入方程式的方式來在輸入層和輸出層應用激活函數。

這裡我們使用整流線性激活(ReLU):

用Keras開發第一個神經網路

關於Keras:

Keras是一個高級神經網路的應用程序編程介面,由Python編寫,能夠搭建在TensorFlow,CNTK,或Theano上。

使用PIP在設備上安裝Keras,並且運行下列指令。

在keras執行深度學習程序的步驟

1,載入數據;

2,創建模型;

3,編譯模型;

4,擬合模型;

5,評估模型。

開發Keras模型

全連接層用Dense表示。我們可以指定層中神經元的數量作為第一參數,指定初始化方法為第二參數,即初始化參數,並且用激活參數確定激活函數。既然模型已經創建,我們就可以編譯它。我們在底層庫(也稱為後端)用高效數字型檔編譯模型,底層庫可以用Theano或TensorFlow。目前為止,我們已經完成了創建模型和編譯模型,為進行有效計算做好了準備。現在可以在PIMA數據上運行模型了。我們可以在模型上調用擬合函數f(),以在數據上訓練或擬合模型。

我們先從KERAS中的程序開始,

神經網路一直訓練到150個時期,並返回精確值。

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/306225.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2025-01-02 12:00
下一篇 2025-01-02 12:00

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智慧、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29

發表回復

登錄後才能評論