一、Siamese Network是什麼
Siamese Network是一種深度學習網路,使用對稱結構來進行相似度比較和驗證。Siamese Network最初被用於人臉驗證和特定項目中的圖像識別,隨後被應用在文本、語音和其他領域中。Siamese Network的核心思想是使用兩個相同的神經網路,對兩個輸入進行處理,並匯總結果進行比較。該網路不需要標記數據,因此非常適合在訓練數據較少的情況下進行相似度比較。
二、Siamese Network的結構
Siamese Network的核心思想是使用兩個相同的神經網路,對輸入進行處理,然後比較結果。下面是一個簡單的Siamese Network模型:
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn1 = nn.Sequential(
nn.Conv2d(1, 96, kernel_size=11, stride=1),
nn.ReLU(inplace=True),
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(96, 256, kernel_size=5, stride=1),
nn.ReLU(inplace=True),
nn.LocalResponseNorm(5, alpha=0.0001, beta=0.75),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(256, 384, kernel_size=3, stride=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, stride=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.fc1 = nn.Sequential(
nn.Linear(256 * 6 * 6, 4096),
nn.Sigmoid()
)
self.fc2 = nn.Sequential(
nn.Linear(4096, 1024),
nn.Sigmoid()
)
self.fc3 = nn.Linear(1024, 1)
def forward_once(self, x):
out = self.cnn1(x)
out = out.view(out.size()[0], -1)
out = self.fc1(out)
out = self.fc2(out)
return out
def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
distance = torch.sqrt(torch.sum(torch.pow(output1 - output2, 2), 1))
return self.fc3(distance)
在這個模型中,Siamese Network由三個主要組件組成:卷積神經網路、全連接層和距離度量層。網路採用兩個相同的卷積神經網路,每個神經網路包含卷積層和全連接層。這兩個網路處理兩個輸入,然後使用距離度量層比較兩個結果的相似度。為避免梯度消失問題,在全連接層中使用Sigmoid激活函數。
三、Siamese Network的應用
1. 相似度度量
Siamese Network被廣泛應用在相似度度量中,在OCR、特定領域的搜索場景中得到了成功的應用。以下是一個使用Siamese Network進行文本相似度比較的示例:
class TextSiamese(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, dropout, use_gpu=False):
super(TextSiamese, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.use_gpu = use_gpu
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, dropout=dropout, bidirectional=True)
self.fc1 = nn.Linear(hidden_dim * 4, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)
self.dropout = nn.Dropout(dropout)
def init_hidden(self, batch_size):
if self.use_gpu:
h0 = Variable(torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).cuda())
c0 = Variable(torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim).cuda())
else:
h0 = Variable(torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim))
c0 = Variable(torch.zeros(self.num_layers * 2, batch_size, self.hidden_dim))
return (h0, c0)
def forward_once(self, input, hidden):
emb = self.dropout(self.embedding(input))
out, hidden = self.lstm(emb, hidden)
return out[:, -1, :]
def forward(self, input1, input2):
hidden1 = self.init_hidden(input1.size()[0])
hidden2 = self.init_hidden(input2.size()[0])
output1 = self.forward_once(input1, hidden1)
output2 = self.forward_once(input2, hidden2)
distance = torch.abs(output1 - output2)
distance = self.fc1(distance)
distance = self.dropout(distance)
distance = self.fc2(distance)
return distance
在此模型中,我們使用了一個雙向的LSTM網路作為文本的編碼器,並在全連接層中使用了Sigmoid激活函數來預測文本對之間的相似度。
2. 圖像檢索
Siamese Network也被廣泛應用於圖像檢索,其核心思想是使用CNN網路對圖像進行編碼,然後使用距離度量層比較兩張圖像的相似度。以下是一個示例代碼:
class ImageSiamese(nn.Module):
def __init__(self, pretrained_model):
super(ImageSiamese, self).__init__()
self.cnn = nn.Sequential(*list(pretrained_model.children())[:-1])
self.fc = nn.Sequential(
nn.Linear(in_features=512, out_features=1024),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(in_features=1024, out_features=1)
)
def forward_once(self, x):
x = self.cnn(x)
x = x.view(x.size()[0], -1)
x = self.fc(x)
return x
def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
distance = torch.sqrt(torch.sum(torch.pow(output1 - output2, 2), 1))
return distance
在圖像檢索中,我們使用了預訓練CNN網路對圖像進行編碼,並在全連接層中使用了ReLU激活函數和Dropout層來提高模型的泛化能力。與文本相似度比較類似,圖像相似度比較可以使用距離度量層進行計算。
3. 對話建模
Siamese Network也被廣泛應用於對話建模,其核心思想是使用LSTM網路對對話進行編碼,然後使用距離度量層比較兩個對話之間的相似度。以下是一個示例代碼:
class DialogSiamese(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, dropout):
super(DialogSiamese, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers, dropout=dropout, bidirectional=True)
self.fc = nn.Sequential(
nn.Linear(hidden_dim * 4, hidden_dim),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(hidden_dim, 1)
)
def forward_once(self, input):
emb = self.embedding(input)
_, (h, c) = self.lstm(emb)
h = torch.cat([h[0], h[1]], dim=1)
c = torch.cat([c[0], c[1]], dim=1)
out = torch.cat([h, c], dim=1)
out = self.fc(out)
return out
def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
distance = torch.sqrt(torch.sum(torch.pow(output1 - output2, 2), 1))
return distance
在對話建模中,我們使用了一個雙向LSTM網路對對話進行編碼,並在全連接層中使用ReLU激活函數和Dropout層來增強模型的泛化能力。在前向計算中,使用距離度量層計算兩個對話之間的相似度。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/291250.html