本文目錄一覽:
- 1、Python 數據可視化:Altair 使用全解析
- 2、Python 數據可視化:繪製箱線圖、餅圖和直方圖
- 3、Python數據分析:可視化
- 4、python數據可視化–可視化概述
- 5、Python中數據可視化經典庫有哪些?
Python 數據可視化:Altair 使用全解析
ggplot2 是 R 的作圖工具包,可以使用非常簡單的語句實現非常複雜漂亮的效果。然而不幸的是,ggplot2 並不支持 Python。
在 Python 中,我們常使用 matplotlib 用於可視化圖形,matplotlib是一個很強大的可視化庫,但是它有著很嚴重的局限性。matplotlib 的使用非常靈活,這可以說的上是它的一個優點,但是當我們想為圖形加一個小小的功能的時候,它的繁瑣操作會讓我們舉步維艱。除此之外,matplotlib 的兩種界面(面向對象界面、基於狀態的界面)令人相當困惑,對於新手很不友好。即使對於多年使用 matplotlib 的人而言,他們也無法完全掌握這些操作。最後不得不說的是,用 matplotlib 製作互動式圖表是一件相當困難的事情。
Altair 是 Vega-Lite 的包裝器。Vega-Lite 是 JavaScript 的高級可視化庫,它最最重要的特點是,它的API是基於圖形語法的。
什麼是圖形語法呢? 圖形語法聽起來有點像一個抽象的功能,值得注意的是,它是 Altair 和其他 Python 可視化庫之間最主要的區別。Altair 符合我們人類可視化數據的方式和習慣,Altair 只需要三個主要的參數:
基於以上三個參數,Altair 將會選擇合理的默認值來顯示我們的數據。
Altair 最讓人著迷的地方是,它能夠合理的選擇顏色。如果我們在 Encoding 中指定 變數類型為量化變數 ,那麼 Altair 將會使用連續的色標來著色(默認為 淺藍色-藍色-深藍色)。如果 變數類型指定為類別變數 ,那麼 Altair 會為每個類別賦予不同的顏色。(例如 紅色,黃色,藍色)
讓我們來看一個具體的例子,如下所示,我們組織了6個國家和它們所對應的人口數據,除此之外,還有相應的收入數據:
首先我們繪製每個國家的人口數據:
Python 數據可視化:繪製箱線圖、餅圖和直方圖
上一課介紹了柱形圖和條形圖,本課將介紹另外幾種統計圖表。
Box Plot 有多種翻譯,盒須圖、盒式圖、盒狀圖或箱線圖、箱形圖等,不管什麼名稱,它的基本結構是這樣的:
這種圖是由美國著名統計學家約翰·圖基(John Tukey)於 1977 年發明的,它能顯示出一組數據的上限、下限、中位數及上下四分位數。
為了更深入理解箱線圖的含義,假設有這樣一組數據:[1, 3, 5, 8, 10,11, 16, 98 ],共有 8 個數字。
首先要計算箱線圖中的「四分位數」,注意不是 4 個數:
對於已經排序的數據 [1, 3, 5, 8, 10,11, 16, 98 ],下四分位數(Q1)的位置是數列中從小到大第 2.25 個數,當然是不存在這個數字的——如果是第 2 個或者第 3 個,則存在。但是,可以用下面的原則,計算出此位置的數值。
四分位數等於與該位置兩側的兩個整數的加權平均數,此權重取決於相對兩側整數的距離遠近,距離越近,權重越大,距離越遠,權重越小,權數之和等於 1。
根據這個原則,可以分別計算本例中數列的 3 個四分位數。
在此計算基礎上,還可以進一步計算四分位間距和上限、下限的數值。
先看一個簡單示例,了解基本的流程。
輸出結果:
這裡繪製了兩張箱線圖,一張沒有顯示平均值,另外一張顯示了平均值,所使用的方法就是 boxplot,其完整參數列表為:
參數很多,不要擔心記憶問題,更別擔心理解問題。首先很多參數都是可以「望文生義」的,再有,與以前所使用的其他方法(函數)的參數含義也大同小異。
輸出結果:
所謂的「凹槽」,不是簡單形狀的改變,左右折線的上限區間表示了數據分布的置信區間,橫線依然是上限和下限。
Python數據分析:可視化
本文是《數據蛙三個月強化課》的第二篇總結教程,如果想要了解 數據蛙社群 ,可以閱讀 給DataFrog社群同學的學習建議 。溫馨提示:如果您已經熟悉python可視化內容,大可不必再看這篇文章,或是之挑選部分文章
對於我們數據分析師來說,不僅要自己明白數據背後的含義,而且還要給老闆更直觀的展示數據的意義。所以,對於這項不可缺少的技能,讓我們來一起學習下吧。
畫圖之前,我們先導入包和生成數據集
我們先看下所用的數據集
折線圖是我們觀察趨勢常用的圖形,可以看出數據隨著某個變數的變化趨勢,默認情況下參數 kind=”line” 表示圖的類型為折線圖。
對於分類數據這種離散數據,需要查看數據是如何在各個類別之間分布的,這時候就可以使用柱狀圖。我們為每個類別畫出一個柱子。此時,可以將參數 kind 設置為 bar 。
條形圖就是將豎直的柱狀圖翻轉90度得到的圖形。與柱狀圖一樣,條形圖也可以有一組或多種多組數據。
水平條形圖在類別名稱很長的時候非常方便,因為文字是從左到右書寫的,與大多數用戶的閱讀順序一致,這使得我們的圖形容易閱讀。而柱狀圖在類別名稱很長的時候是沒有辦法很好的展示的。
直方圖是柱形圖的特殊形式,當我們想要看數據集的分布情況時,選擇直方圖。直方圖的變數劃分至不同的範圍,然後在不同的範圍中統計計數。在直方圖中,柱子之間的連續的,連續的柱子暗示數值上的連續。
箱線圖用來展示數據集的描述統計信息,也就是[四分位數],線的上下兩端表示某組數據的最大值和最小值。箱子的上下兩端表示這組數據中排在前25%位置和75%位置的數值。箱中間的橫線表示中位數。此時可以將參數 kind 設置為 box。
如果想要畫出散點圖,可以將參數 kind 設置為 scatter,同時需要指定 x 和 y。通過散點圖可以探索變數之間的關係。
餅圖是用面積表示一組數據的佔比,此時可以將參數 kind 設置為 pie。
我們剛開始學習的同學,最基本應該明白什麼數據應該用什麼圖形來展示,同學們來一起總結吧。
python數據可視化–可視化概述
數據可視化是python最常見的應用領域之一,數據可視化是藉助圖形化的手段將一組數據以圖形的形式表達出來,並利用數據分析和開發工具發現其中未知信息的數據處理過程。
在學術界有一句話廣為流傳,A picture worths thousand words,就是一圖值千言。在課堂上,我經常舉的例子就是大家在刷朋友圈的時候如果看到有人轉發一篇題目很吸引人的文章時,我們都會點擊進去,可能前幾段話會很認真地看,文章很長的時候後面就會一目十行,失去閱讀的興趣。
所以將數據、表格和文字等內容用圖表的形式表達出來,既能提高讀者閱讀的興趣,還能直觀表達想要表達的內容。
python可視化庫有很多,下面列舉幾個最常用的介紹一下。
matplotlib
它是python眾多數據可視化庫的鼻祖,也是最基礎的底層數據可視化第三方庫,語言風格簡單、易懂,特別適合初學者入門學習。
seaborn
Seaborn是在matplotlib的基礎上進行了更高級的API封裝,從而使得作圖更加容易,在大多數情況下使用seaborn能做出很具有吸引力的圖,而使用matplotlib就能製作具有更多特色的圖。應該把Seaborn視為matplotlib的補充,而不是替代物。
pyecharts
pyecharts是一款將python與echarts結合的強大的數據可視化工具,生成的圖表精巧,交互性良好,可輕鬆集成至 Flask,Sanic,Django 等主流 Web 框架,得到眾多開發者的認可。
bokeh
bokeh是一個面向web瀏覽器的互動式可視化庫,它提供了多功能圖形的優雅、簡潔的構造,並在大型數據集或流式數據集上提供高性能的交互性。
python這些可視化庫可以便捷、高效地生成豐富多彩的圖表,下面列舉一些常見的圖表。
柱形圖
條形圖
坡度圖
南丁格爾玫瑰圖
雷達圖
詞雲圖
散點圖
等高線圖
瀑布圖
相關係數圖
散點曲線圖
直方圖
箱形圖
核密度估計圖
折線圖
面積圖
日曆圖
餅圖
圓環圖
馬賽克圖
華夫餅圖
還有地理空間型等其它圖表,就不一一列舉了,下節開始我們先學習matplotlib這個最常用的可視化庫。
Python中數據可視化經典庫有哪些?
Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。
matplotlib
是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,嚮應用程序嵌入式繪圖提供了應用程序介面。
pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。
優點:繪圖質量高,可繪製出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕鬆,通過Matplotlib可以很輕鬆地畫一些或簡單或複雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。
pandas
Pandas 是一個開放源碼、BSD 許可的庫,提供高性能、易於使用的數據結構和數據分析工具。Pandas 廣泛應用在學術、金融、統計學等各個數據分析領域。需要說明的是它不是「熊貓」,名字衍生自術語 “panel data”(面板數據)和 “Python data analysis”(Python 數據分析)。
優點:是Python的核心數據分析支持庫,提供了快速、靈活、明確的數據結構,旨在簡單、直觀的處理關係型、標記型數據。對於數據分析專業人士,它是數據分析及可視化的利器。
seaborn
Seaborn是基於matplotlib的圖形可視化python包。它提供了一種高度互動式界面,便於用戶能夠做出各種有吸引力的統計圖表。
它是基於matplotlib更高級的API封裝,從而使得作圖更加容易,在大多數情況下使用seaborn能做出很具有吸引力的圖,應該把Seaborn視為matplotlib的補充,而不是替代物,它能高度兼容numpy與pandas數據結構以及scipy與statsmodels等統計模式。
優點:matplotlib高度封裝,代碼量少,圖表漂亮。比起matplotlib具有更美觀、更現代的調色板設計等優點。scikit-plot
這是一個跟機器學習有效結合的繪圖庫。想要深入學習的小夥伴參見其github倉庫,這裡不再贅述了。
優點:Scikit-Plot是由ReiichiroNakano創建的用在機器學習的可視化工具,能最快速簡潔的畫出用Matplotlib要寫很多行語句才能畫出的圖。關鍵是對於機器學習相關可視化處理,該庫有較好的支持。
Networkx
networkx是Python的一個包,用於構建和操作複雜的圖結構,提供分析圖的演算法。圖是由頂點、邊和可選的屬性構成的數據結構,頂點表示數據,邊是由兩個頂點唯一確定的,表示兩個頂點之間的關係。頂點和邊也可以擁有更多的屬性,以存儲更多的信息。
優點:用於創建、操縱和研究複雜網路的結構、以及學習複雜網路的結構、功能及其動力學。
上面是我的回答,希望對您有所幫助!
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/286562.html