矩陣是一個非常抽象的數學概念,很多同學都對其望而生畏。但是,如果能夠具體的理解了內部含義,就如同打開了一扇新的大門。
本文主要講的是特徵向量(Eigenvector)和特徵值(Eigenvalue)。
01 特徵向量(Eigenvector)是什麼?

基向量
我們一般研究數學,都是在直角坐標系中,這就造就了兩個基向量:v(0,1)和 u(1,0)。
為了說明特徵向量,我們先看一下矩陣A和向量B(1,-1):

矩陣A
如果將A和B相乘,結果如下:

AB和2B
AB
矩陣實際上可以被看作為一個變換,AB實際上表達的意思是 向量B 通過矩陣A完成了一次變換,有可能只是拉伸,有可能是旋轉,有可能兩者都有。
2B
上圖中,2B的理解就簡單很多,是將向量B拉長2倍。
那麼,特徵向量的定義如下:
任意給定一個矩陣A,並不是對所有的向量B都能被A拉長(縮短)。凡是能被A拉長(縮短)的向量稱為A的特徵向量(Eigenvector);拉長(縮短)量就為這個特徵向量對應的特徵值(Eigenvalue)。
上例中,B就是矩陣A的特徵向量,2是特徵值。

特徵值的求法
02 怎麼求矩陣的平方和多次方

矩陣A
還是矩陣A,如果讓你求矩陣A的平方,你可能會覺得挺容易的。

但是,如果讓你求A的100次方呢?
還有那麼容易嗎?
按照上面的方法,一點規律沒有,只能硬著頭皮算。
補充一個概念:對角矩陣

對角矩陣
對角矩陣,顧名思義,只有對角線上有值,其他位置都是0。為什麼對角矩陣特殊,如上圖,C的平方就是對角線上數的平方,多次方也一樣。
那麼,怎麼才能將矩陣A轉變成矩陣C呢?
這就用到特徵值和特徵向量了。

A的特徵值
A有兩個特徵值,對應兩個特徵向量:(1,0)和(1,-1)。
如果我們將兩個特徵向量看作是一個新的坐標系的基向量,並組合成矩陣D:

我們來計算一下

如上圖,成功的通過特徵向量將A轉變成了對角矩陣C。

A和B相似
03 求A的多次方
這下求A的多次方就方便多了:

由於C是一個對角矩陣,C的n階矩陣就比較好運算。
有的同學會問,這些計算到底有什麼用。下面舉個例子。
比方說圖片,圖片其實是一個一個像素排列在一個矩陣中。

上圖所有的像素點堆疊在圖片大小的矩陣A中(不要光看美女)。當我們對成像要求並不高,並且需要保留基本的成像特徵值的時候,就可以將特徵值從大到小的排列,並保存在矩陣C中。C中斜對角線上的值就是 上述圖像 成像的特徵值。
打個比方,上圖可能有100個從大到小的成像特徵值,但是我們只取較大的50個,並且對圖片進行處理,最後我們可以得到以下圖片。

雖然不大清晰,但是主要特徵並沒有丟失。
原創文章,作者:投稿專員,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/281578.html
微信掃一掃
支付寶掃一掃