本文目錄一覽:
- 1、Python中除了matplotlib外還有哪些數據可視化的庫
- 2、最受歡迎的 15 大 Python 庫有哪些
- 3、python”高維數據”可視化用什麼庫
- 4、Python使用bokeh及folium實現地理位置信息的交互可視化
Python中除了matplotlib外還有哪些數據可視化的庫
數據可視化是展示數據、理解數據的有效手段,常用的Python數據可視化庫如下:
1.Matplotlib:第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常複雜。
2.Seaborn:利用Matplotlib,用簡潔的代碼來製作好看的圖表,與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
3.ggplot:基於R的一個作圖庫的ggplot2,同時利用了源於《圖像語法》中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的複雜度。
4.Bokeh:與ggplot很相似,但與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
5.Plotly:可以通過Python notebook使用,與bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
6.pygal:與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
7.geoplotlib:用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖等,必須安裝Pyglet方可使用。
8.missingno:用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。
最受歡迎的 15 大 Python 庫有哪些
1、Pandas:是一個Python包,旨在通過「標記」和「關係」數據進行工作,簡單直觀。它設計用於快速簡單的數據操作、聚合和可視化,是數據整理的完美工具。
2、Numpy:是專門為Python中科學計算而設計的軟體集合,它為Python中的n維數組和矩陣的操作提供了大量有用的功能。該庫提供了NumPy數組類型的數學運算向量化,可以改善性能,從而加快執行速度。
3、SciPy:是一個工程和科學軟體庫,包含線性代數,優化,集成和統計的模塊。SciPy庫的主要功能是建立在NumPy上,通過其特定子模塊提供有效的數值常式,並作為數字積分、優化和其他常式。
4、Matplotlib:為輕鬆生成簡單而強大的可視化而量身定製,它使Python成為像MatLab或Mathematica這樣的科學工具的競爭對手。
5、Seaborn:主要關注統計模型的可視化(包括熱圖),Seaborn高度依賴於Matplotlib。
6、Bokeh:獨立於Matplotlib,主要焦點是交互性,它通過現代瀏覽器以數據驅動文檔的風格呈現。
7、Plotly:是一個基於Web用於構建可視化的工具箱,提供API給一些編程語言(Python在內)。
8、Scikits:是Scikits
Stack額外的軟體包,專為像圖像處理和機器學習輔助等特定功能而設計。它建立在SciPy之上,中集成了有質量的代碼和良好的文檔、簡單易用並且十分高效,是使用Python進行機器學習的實際行業標準。
9、Theano:是一個Python軟體包,它定義了與NumPy類似的多維數組,以及數學運算和表達式。此庫是被編譯的,可實現在所有架構上的高效運行。
10、TensorFlow:是數據流圖計算的開源庫,旨在滿足谷歌對訓練神經網路的高需求,並且是基於神經網路的機器學習系統DistBelief的繼任者,可以在大型數據集上快速訓練神經網路。
11、Keras:是一個用Python編寫的開源的庫,用於在高層的介面上構建神經網路。它簡單易懂,具有高級可擴展性。
12、NLTK:主要用於符號學和統計學自然語言處理(NLP) 的常見任務,旨在促進NLP及相關領域(語言學,認知科學人工智慧等)的教學和研究。
13、Gensim:是一個用於Python的開源庫,為有向量空間模型和主題模型的工作提供了使用工具。這個庫是為了高效處理大量文本而設計,不僅可以進行內存處理,還可以通過廣泛使用NumPy數據結構和SciPy操作來獲得更高的效率。
python”高維數據”可視化用什麼庫
常見的Python可視化庫有哪些?
Matplotlib
Matplotlib是一個Python 2維繪圖庫,已經成為Python中公認的數據可視化工具,通過Matplotlib你可以很輕鬆地畫一些或簡單或複雜地圖形,幾行代碼即可生成線圖、直方圖、功率譜、條形圖、錯誤圖、散點圖等等。
Seaborn
Seaborn是基於Mtplotlib產生的一個模塊,專攻於統計可視化,可以和pandas進行無縫鏈接,使初學者更容易上手。相對於Matplotlib,Seaborn語法更簡潔,兩者關係類似於NumPy、和Pandas之間的關係。
HoloViews
HoloViews是一個開源的Python庫,可以用非常少的代碼行中完成數據分析和可視化,除了默認的Matplotlib後端外,還添加了一個Bokeh後端。Bokeh提供了一個強大的平台,通過結合Bokeh提供的互動式小部件,可以使用HTML5 canvas和WebGL快速生成交互性和高維可視化,非常適合於數據的互動式探索。
Altair
Altair是Python的一個公認的統計可視化庫,它的API簡單、友好、一致,並建立在強大的vega-lite(互動式圖形語法)之上。Altair API不包含實際的可視化呈現代碼,而是按照vega-lite規範發出JSON數據結構。由此產生的數據可以在用戶界面中呈現,這種優雅的簡單性產生了漂亮且有效的可視化效果,且只需很少的代碼。
ggplot
ggplot是基於R的ggplot2和圖形語法的Python的繪圖系統,實現了更少的代碼繪製更專業的圖形。
它使用一個高級且富有表現力的API來實現線,點等元素的添加,顏色的更改等不同類型的可視化組件的組合或添加,而不需要重複使用相同的代碼,然而這對那些試圖進行高度定製的的來說,ggplot並不是最好的選擇,儘管它也可以製作一些非常複雜、好看的圖形。
Bokeh
Bokeh是一個Python互動式可視化庫,支持現代化Web瀏覽器展示。它提供風格優雅、簡潔的D3.js的圖形化樣式,並將此功能擴展到高性能交互的數據集,數據流上。使用Bokeh可以快速便捷地創建互動式繪圖、儀錶板和數據應用程序等。
Bokeh能與NumPy、Pandas,Blaze等大部分數組或表格式的數據結構完美結合。
Python使用bokeh及folium實現地理位置信息的交互可視化
Talk is cheap,show U the code!
不帶控制項全部顯示分類點
全部數據
部分數據
衛星地圖
civilpy:Python載入basemap繪製分省地圖 1 贊同 · 1 評論文章
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/279161.html