本文目錄一覽:
- 1、Python筆記:命令行參數解析
- 2、python自學筆記一 基礎輸出
- 3、Python元組常用操作小技巧
- 4、利用Python進行數據分析筆記:3.1數據結構
- 5、可以讓你快速用Python進行數據分析的10個小技巧
Python筆記:命令行參數解析
有些時候我們需要通過命令行將參數傳遞給腳本,C語言中有個getopt()方法,python中也有個類似的命令行參數解析方法getopt()。python也提供了比getopt()更簡潔的argparse方法。另外,sys模塊也可以實現簡單的參數解析,本文將對這3種命令行參數解析方法簡要介紹。
sys.argv是傳入的參數列表,sys.argv[0]是當前python腳本的名稱,sys.argv[1]表示第一個參數,以此類推。
命令行運行:
可以看到傳入的參數通過sys.argv來獲取,它就是一個參數列表。
python的getopt與C語言的的getopt()函數類似。相比於sys模塊,支持長參數和短參數,並對參數解析賦值。但它需要結合sys模塊進行參數解析,語法格式如下:
短參數為單個英文字母,如果必須賦值需要在後面加英文冒號( : ),長參數一般為字元串(相比短參數,更能說明參數含義),如果必須賦值需要在後面加等號( = )。
命令行運行:
注意:短參數(options)和長參數(long_options)不需要一一對應,可以任意順序,也可以只有短參數或者只有長參數。
argparse模塊提供了很多可以設置的參數,例如參數的默認值,幫助消息,參數的數據類型等。argparse類主要包括ArgumentParser、add_argument和parse_args三個方法。
下面介紹這三個函數的使用方法。
argparse默認提供了 -h | –help 參數:
命令行運行:
下面列出部分參數:
下面來添加參數:
命令行運行:
parse_args() 方法用於解析參數,在前面的示例代碼中使用parse_args方法來提取參數值,對於無效或者錯誤的參數會列印錯誤信息和幫助信息:
命令行運行:
本文介紹了Python的三種命令行參數解析方法sys.argv、getopt和argparse,可以根據自己的需要進行選擇,getopt和argparse兩種方法相比來說,建議選擇argparse,代碼量更少更簡潔。更詳細的使用方法參考官方文檔:
–THE END–
python自學筆記一 基礎輸出
print(“我是python小白”)
終端輸出:我是python 。
此種寫法只用於了解print函數的作用,在程序中要輸出某個內容,一般採用變數的形式,即:
my=”小白”
print(“我是python%s。” % my)
終端輸出:我是python小白。
此處my為變數,小白是被賦值給變數my,並不是my等於變數。定義變數的好處是一個程序可以無限次數的使用它。定義變數還可以為:
a=b=c=2 #2同時賦值給a b c三個變數
a,b c=1,2,3 #a=1 b=2 c=3
注意:變數名區分大小寫,不能以數字開頭。
name,age,weight=”小白”,18,65.5
stuid=1
print(“我的名字是%s,我的年齡是%d,我的體重是%f公斤,我和學號是%d” % (name,age,weight,stuid))
終端輸出:我的名字是小白,我的年齡是18歲,我的體重是65.500000公斤,我的學號是1
print(“我的名字是%s,我的年齡是%d歲,我的體重是%.2f公斤,我的學號是%03d” %(name,age,weight,stuid))
終端輸出:我的名字是小白,我的年齡是18歲,我的體重是65.50公斤,我的學號是001
printt(f”我的名字是{name},我明年的年齡是{age 1}歲,我的體重是{weight}公斤,我的學號是00{stuid}”)
#此種寫法為最常用的。
終端輸出:我的名字是小白,我明年的年齡是19歲,我的體重是65.5公斤,我的學號是001
%d 為整數型函數值 %03d表示以3位整數顯示,不足的以0替代,超出的原樣顯示。
%f為小數型函數值%.2f表示只顯示小數點後兩位
%s為字元型函數值 字元串應以雙引或單引號括起。
Python元組常用操作小技巧
所以這篇文章,我們先來回顧和總結Python數據結構里常用操作。Python中常見的數據結構可以統稱為容器(container)。序列(如列表和元組)、映射(如字典)以及集合(set)是三類主要的容器。而扁平序列如str、bytes、bytearray、memoryview 和 array.array等不在這篇文章的討論範圍內。
在此,我們先從元組開始說起。
元組區別於列表的顯著特徵之一就是它不能被修改,但其另外一個作用就是 用於沒有欄位名的記錄 [1] 。因為後者經常被忽略,我們先來看看元組作為記錄的作用。
使用括弧就可以定義一個元組。元組中的每個元素都存放了記錄中一個欄位的數據,外加這個欄位的位置。正是這個位置信息給數據賦予了意義。下面的例子中,元組就被當作記錄加以利用:
輸出為:
上述for循環中的操作提取了元組中的元素,也叫作拆包(unpacking)。平行賦值是對元組拆包很好的應用,示例如下:
還有一個經典而優雅的應用是交換變數的值:
用 * 運算符把一個可迭代對象拆開作為函數的參數,例如Python的內置函數pmod接收兩個數字類型的參數,返回商和餘數。以下範例將使用 * 將元組傳入函數。
輸出為:
有些函數有多個返回值,將其賦給一個變數時,變數類型即是元組:
輸出為:
zip是Python的內置函數,能夠接收兩個或多個序列,並組成一個元組列表,在Python3中會返回一個迭代器,如下所示:
輸出為:
元組當然也支持一些常規操作,如對於元組 a = (1, ‘y’, 5, 5, ‘x’) :
上述內容不僅涵蓋了元組的基本操作,同時也結合了實際工作中常搭配使用的其他函數、運算符等。在回顧這些知識時主要參考了兩本經典的Python編程書籍:《流暢的Python》和《像計算機科學家一樣思考Python》,有興趣的朋友可以深入閱讀!
希望這篇文章對你有幫助,下回將總結Python列表的使用技巧。
[1]《流暢的Python》:
利用Python進行數據分析筆記:3.1數據結構
元組是一種固定長度、不可變的Python對象序列。創建元組最簡單的辦法是用逗號分隔序列值:
tuple 函數將任意序列或迭代器轉換為元組:
中括弧 [] 可以獲取元組的元素, Python中序列索引從0開始 :
元組一旦創建,各個位置上的對象是無法被修改的,如果元組的一個對象是可變的,例如列表,你可以在它內部進行修改:
可以使用 + 號連接元組來生成更長的元組:
元組乘以整數,則會和列表一樣,生成含有多份拷貝的元組:
將元組型的表達式賦值給變數,Python會對等號右邊的值進行拆包:
拆包的一個常用場景就是遍曆元組或列表組成的序列:
*rest 用於在函數調用時獲取任意長度的位置參數列表:
count 用於計量某個數值在元組中出現的次數:
列表的長度可變,內容可以修改。可以使用 [] 或者 list 類型函數來定義列表:
append 方法將元素添加到列表尾部:
insert 方法可以將元素插入到指定列表位置:
( 插入位置範圍在0到列表長度之間 )
pop 是 insert 的反操作,將特定位置的元素移除並返回:
remove 方法會定位第一個符合要求的值並移除它:
in 關鍵字可以檢查一個值是否在列表中;
not in 表示不在:
+ 號可以連接兩個列表:
extend 方法可以向該列表添加多個元素:
使用 extend 將元素添加到已經存在的列表是更好的方式,比 + 快。
sort 方法可以對列表進行排序:
key 可以傳遞一個用於生成排序值的函數,例如通過字元串的長度進行排序:
bisect.bisect 找到元素應當被插入的位置,返回位置信息
bisect.insort 將元素插入到已排序列表的相應位置保持序列排序
bisect 模塊的函數並不會檢查列表是否已經排序,因此對未排序列表使用bisect不會報錯,但是可能導致不正確結果
切片符號可以對大多數序列類型選取子集,基本形式是 [start:stop]
起始位置start索引包含,結束位置stop索引不包含
切片還可以將序列賦值給變數:
start和stop可以省略,默認傳入起始位置或結束位置,負索引可以從序列尾部進行索引:
步進值 step 可以在第二個冒號後面使用, 意思是每隔多少個數取一個值:
對列表或元組進行翻轉時,一種很聰明的用法時向步進值傳值-1:
dict(字典)可能是Python內建數據結構中最重要的,它更為常用的名字是 哈希表 或者 關聯數組 。
字典是鍵值對集合,其中鍵和值都是Python對象。
{} 是創建字典的一種方式,字典中用逗號將鍵值對分隔:
你可以訪問、插入或設置字典中的元素,:
in 檢查字典是否含有一個鍵:
del 或 pop 方法刪除值, pop 方法會在刪除的同時返回被刪的值,並刪除鍵:
update 方法將兩個字典合併:
update方法改變了字典元素位置,對於字典中已經存在的鍵,如果傳給update方法的數據也含有相同的鍵,則它的值將會被覆蓋。
字典的值可以是任何Python對象,但鍵必須是不可變的對象,比如標量類型(整數、浮點數、字元串)或元組(且元組內對象也必須是不可變對象)。
通過 hash 函數可以檢查一個對象是否可以哈希化(即是否可以用作字典的鍵):
集合是一種無序且元素唯一的容器。
set 函數或者是用字面值集與大括弧,創建集合:
union 方法或 | 二元操作符獲得兩個集合的聯合即兩個集合中不同元素的並集:
intersection 方法或 操作符獲得交集即兩個集合中同時包含的元素:
常用的集合方法列表:
和字典類似,集合的元素必須是不可變的。如果想要包含列表型的元素,必須先轉換為元組:
可以讓你快速用Python進行數據分析的10個小技巧
一些小提示和小技巧可能是非常有用的,特別是在編程領域。有時候使用一點點黑客技術,既可以節省時間,還可能挽救「生命」。
一個小小的快捷方式或附加組件有時真是天賜之物,並且可以成為真正的生產力助推器。所以,這裡有一些小提示和小技巧,有些可能是新的,但我相信在下一個數據分析項目中會讓你非常方便。
Pandas中數據框數據的Profiling過程
Profiling(分析器)是一個幫助我們理解數據的過程,而Pandas Profiling是一個Python包,它可以簡單快速地對Pandas 的數據框數據進行 探索 性數據分析。
Pandas中df.describe()和df.info()函數可以實現EDA過程第一步。但是,它們只提供了對數據非常基本的概述,對於大型數據集沒有太大幫助。 而Pandas中的Profiling功能簡單通過一行代碼就能顯示大量信息,且在互動式HTML報告中也是如此。
對於給定的數據集,Pandas中的profiling包計算了以下統計信息:
由Pandas Profiling包計算出的統計信息包括直方圖、眾數、相關係數、分位數、描述統計量、其他信息——類型、單一變數值、缺失值等。
安裝
用pip安裝或者用conda安裝
pip install pandas-profiling
conda install -c anaconda pandas-profiling
用法
下面代碼是用很久以前的泰坦尼克數據集來演示多功能Python分析器的結果。
#importing the necessary packages
import pandas as pd
import pandas_profiling
df = pd.read_csv(‘titanic/train.csv’)
pandas_profiling.ProfileReport(df)
一行代碼就能實現在Jupyter Notebook中顯示完整的數據分析報告,該報告非常詳細,且包含了必要的圖表信息。
還可以使用以下代碼將報告導出到互動式HTML文件中。
profile = pandas_profiling.ProfileReport(df)
profile.to_file(outputfile=”Titanic data profiling.html”)
Pandas實現互動式作圖
Pandas有一個內置的.plot()函數作為DataFrame類的一部分。但是,使用此功能呈現的可視化不是互動式的,這使得它沒那麼吸引人。同樣,使用pandas.DataFrame.plot()函數繪製圖表也不能實現交互。 如果我們需要在不對代碼進行重大修改的情況下用Pandas繪製互動式圖表怎麼辦呢?這個時候就可以用Cufflinks庫來實現。
Cufflinks庫可以將有強大功能的plotly和擁有靈活性的pandas結合在一起,非常便於繪圖。下面就來看在pandas中如何安裝和使用Cufflinks庫。
安裝
pip install plotly
# Plotly is a pre-requisite before installing cufflinks
pip install cufflinks
用法
#importing Pandas
import pandas as pd
#importing plotly and cufflinks in offline mode
import cufflinks as cf
import plotly.offline
cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)
是時候展示泰坦尼克號數據集的魔力了。
df.iplot()
df.iplot() vs df.plot()
右側的可視化顯示了靜態圖表,而左側圖表是互動式的,更詳細,並且所有這些在語法上都沒有任何重大更改。
Magic命令
Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標準數據分析中的一些常見問題。使用命令%lsmagic可以看到所有的可用命令。
所有可用的Magic命令列表
Magic命令有兩種:行magic命令(line magics),以單個%字元為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字元為前綴,可以在多行輸入操作。如果設置為1,則不用鍵入%即可調用Magic函數。
接下來看一些在常見數據分析任務中可能用到的命令:
% pastebin
%pastebin將代碼上傳到Pastebin並返回url。Pastebin是一個在線內容託管服務,可以存儲純文本,如源代碼片段,然後通過url可以與其他人共享。事實上,Github gist也類似於pastebin,只是有版本控制。
在file.py文件中寫一個包含以下內容的python腳本,並試著運行看看結果。
#file.py
def foo(x):
return x
在Jupyter Notebook中使用%pastebin生成一個pastebin url。
%matplotlib notebook
函數用於在Jupyter notebook中呈現靜態matplotlib圖。用notebook替換inline,可以輕鬆獲得可縮放和可調整大小的繪圖。但記得這個函數要在導入matplotlib庫之前調用。
%run
用%run函數在notebook中運行一個python腳本試試。
%run file.py
%%writefile
%% writefile是將單元格內容寫入文件中。以下代碼將腳本寫入名為foo.py的文件並保存在當前目錄中。
%%latex
%%latex函數將單元格內容以LaTeX形式呈現。此函數對於在單元格中編寫數學公式和方程很有用。
查找並解決錯誤
互動式調試器也是一個神奇的功能,我把它單獨定義了一類。如果在運行代碼單元時出現異常,請在新行中鍵入%debug並運行它。 這將打開一個互動式調試環境,它能直接定位到發生異常的位置。還可以檢查程序中分配的變數值,並在此處執行操作。退出調試器單擊q即可。
Printing也有小技巧
如果您想生成美觀的數據結構,pprint是首選。它在列印字典數據或JSON數據時特別有用。接下來看一個使用print和pprint來顯示輸出的示例。
讓你的筆記脫穎而出
我們可以在您的Jupyter notebook中使用警示框/注釋框來突出顯示重要內容或其他需要突出的內容。注釋的顏色取決於指定的警報類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。
藍色警示框:信息提示
p class=”alert alert-block alert-info”
bTip:/b Use blue boxes (alert-info) for tips and notes.
If it』s a note, you don』t have to include the word 「Note」.
/p
黃色警示框:警告
p class=”alert alert-block alert-warning”
bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.
/p
綠色警示框:成功
p class=”alert alert-block alert-success”
Use green box only when necessary like to display links to related content.
/p
紅色警示框:高危
p class=”alert alert-block alert-danger”
It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.
/p
列印單元格所有代碼的輸出結果
假如有一個Jupyter Notebook的單元格,其中包含以下代碼行:
In [1]: 10+5
11+6
Out [1]: 17
單元格的正常屬性是只列印最後一個輸出,而對於其他輸出,我們需要添加print()函數。然而通過在notebook頂部添加以下代碼段可以一次列印所有輸出。
添加代碼後所有的輸出結果就會一個接一個地列印出來。
In [1]: 10+5
11+6
12+7
Out [1]: 15
Out [1]: 17
Out [1]: 19
恢復原始設置:
InteractiveShell.ast_node_interactivity = “last_expr”
使用’i’選項運行python腳本
從命令行運行python腳本的典型方法是:python hello.py。但是,如果在運行相同的腳本時添加-i,例如python -i hello.py,就能提供更多優勢。接下來看看結果如何。
首先,即使程序結束,python也不會退出解釋器。因此,我們可以檢查變數的值和程序中定義的函數的正確性。
其次,我們可以輕鬆地調用python調試器,因為我們仍然在解釋器中:
import pdb
pdb.pm()
這能定位異常發生的位置,然後我們可以處理異常代碼。
自動評論代碼
Ctrl / Cmd + /自動注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。
刪除容易恢復難
你有沒有意外刪除過Jupyter notebook中的單元格?如果答案是肯定的,那麼可以掌握這個撤消刪除操作的快捷方式。
如果您刪除了單元格的內容,可以通過按CTRL / CMD + Z輕鬆恢復它。
如果需要恢復整個已刪除的單元格,請按ESC + Z或EDIT撤消刪除單元格。
結論
在本文中,我列出了使用Python和Jupyter notebook時收集的一些小提示。我相信它們會對你有用,能讓你有所收穫,從而實現輕鬆編碼!
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/271685.html