本文目錄一覽:
常用的python庫有哪些
10個頂級且實用的python庫
1、Dash
Dash是比較新的軟體包,它是用純python構建數據可視化app的理想選擇,因此特別適合處理數據的任何人。Dash是Flask、Plotly.js和React.js的混合體。
2、Pygame
Pygame是SDL多媒體庫的python裝飾器,SDL是一個跨平台開發庫,旨在提供對以下內容的低級介面:音頻、鍵盤、滑鼠、遊戲桿、基於OpenGL和Direct3D的圖形硬體。
Pygame具有高度的可移植性,幾乎可以在所有平台和操作系統上運行。儘管它具有完善的遊戲引擎,但您也可以使用此庫直接從python腳本播放MP3文件。
3、Pillow
Pillow專門用於處理圖像,您可以使用該庫創建縮略圖,在文件格式之間轉換、旋轉、應用濾鏡、顯示圖像等等。如果您需要對許多圖像執行批量操作,這是理想的選擇。
4、Colorama
Colorama允許你在終端使用顏色,非常適合python腳本,文檔簡短而有趣,可以在Colorama PyPi頁面上找到。
5、JmesPath
在python中使用JSON非常容易,因為JSON在python字典上的映射非常好。此外,python帶有自己出色的json庫,用於解析和創建JSON。對我來說,這是它最好的功能之一,如果我需要使用JSON,可以考慮使用python。
JmesPath使python處理JSON更加容易,它允許您明確地指定如何從JSON文檔中提取元素。
6、Requests
Requests建立在世界上下載量最大的python庫urllib3上,它令Web請求變得非常簡單,功能強大且用途廣泛。
Requests可以完成您能想到的所有高級工作,比如:認證,使用cookie,執行POST、PUT、DELETE等,使用自定義證書,使用會話Session、使用代理等。
7、Simplejson
python中的本地json模塊有什麼問題?沒有!實際上,python的json是Simplejson。意思是:python採用了Simplejson的一個版本,並將其合併到每個發行版中,但是使用Simplejson具有一些優點:它適用於更多python版本、它比python隨附的版本更新頻率更高、它具有用C編寫的部分,因此非常快速。
8、Emoji
Emoji庫非常意思,但並非每個人都喜歡錶情包,分析視角媒體數據時,Emoji包非常有用。
9、Python-dateutil
Python-dateutil模塊提供了對標準datetime模塊的強大擴展。我的經驗是:常規的python日期時間功能在哪裡結束,而Python-dateutil就出現了。
10、BeautifulSoup
如果您從網站上提取了一些HTML,則需要對其進行解析以獲取實際所需的內容。BeautifulSoup是一個python庫,用於從HTML和XML文件中提取數據。它提供了導航,搜索和修改解析樹的簡單方法。它非常強大,即使損壞了,也能夠處理各種HTML,這是一個非常強大的功能。
它的一些主要功能:
①BeautifulSoup會自動將傳入文檔轉換為Unicode,將傳出文檔轉換為UTF-8,您無需考慮編碼。
②BeautifulSoup位於流行的python解析器的頂部,使您可以嘗試不同的解析策略或提高靈活性。
最受歡迎的 15 大 Python 庫有哪些
1、Pandas:是一個Python包,旨在通過「標記」和「關係」數據進行工作,簡單直觀。它設計用於快速簡單的數據操作、聚合和可視化,是數據整理的完美工具。
2、Numpy:是專門為Python中科學計算而設計的軟體集合,它為Python中的n維數組和矩陣的操作提供了大量有用的功能。該庫提供了NumPy數組類型的數學運算向量化,可以改善性能,從而加快執行速度。
3、SciPy:是一個工程和科學軟體庫,包含線性代數,優化,集成和統計的模塊。SciPy庫的主要功能是建立在NumPy上,通過其特定子模塊提供有效的數值常式,並作為數字積分、優化和其他常式。
4、Matplotlib:為輕鬆生成簡單而強大的可視化而量身定製,它使Python成為像MatLab或Mathematica這樣的科學工具的競爭對手。
5、Seaborn:主要關注統計模型的可視化(包括熱圖),Seaborn高度依賴於Matplotlib。
6、Bokeh:獨立於Matplotlib,主要焦點是交互性,它通過現代瀏覽器以數據驅動文檔的風格呈現。
7、Plotly:是一個基於Web用於構建可視化的工具箱,提供API給一些編程語言(Python在內)。
8、Scikits:是Scikits
Stack額外的軟體包,專為像圖像處理和機器學習輔助等特定功能而設計。它建立在SciPy之上,中集成了有質量的代碼和良好的文檔、簡單易用並且十分高效,是使用Python進行機器學習的實際行業標準。
9、Theano:是一個Python軟體包,它定義了與NumPy類似的多維數組,以及數學運算和表達式。此庫是被編譯的,可實現在所有架構上的高效運行。
10、TensorFlow:是數據流圖計算的開源庫,旨在滿足谷歌對訓練神經網路的高需求,並且是基於神經網路的機器學習系統DistBelief的繼任者,可以在大型數據集上快速訓練神經網路。
11、Keras:是一個用Python編寫的開源的庫,用於在高層的介面上構建神經網路。它簡單易懂,具有高級可擴展性。
12、NLTK:主要用於符號學和統計學自然語言處理(NLP) 的常見任務,旨在促進NLP及相關領域(語言學,認知科學人工智慧等)的教學和研究。
13、Gensim:是一個用於Python的開源庫,為有向量空間模型和主題模型的工作提供了使用工具。這個庫是為了高效處理大量文本而設計,不僅可以進行內存處理,還可以通過廣泛使用NumPy數據結構和SciPy操作來獲得更高的效率。
Python 常用的標準庫以及第三方庫有哪些
推薦5個常用的Python標準庫:
1、os:提供了不少與操作系統相關聯的函數庫
os包是Python與操作系統的介面。我們可以用os包來實現操作系統的許多功能,比如管理系統進程,改變當前路徑,改變文件許可權等。但要注意,os包是建立在操作系統的平台上的,許多功能在Windows系統上是無法實現的。另外,在使用os包中,要注意其中的有些功能已經被其他的包取代。
我們通過文件系統來管理磁碟上儲存的文件。查找、刪除、複製文件以及列出文件列表等都是常見的文件操作。這些功能通常可以在操作系統中看到,但現在可以通過Python標準庫中的glob包、shutil包、os.path包以及os包的一些函數等,在Python內部實現。
2、sys:通常用於命令行參數的庫
sys包被用於管理Python自身的運行環境。Python是一個解釋器,也是一個運行在操作系統上的程序。我們可以用sys包來控制這一程序運行的許多參數,比如說Python運行所能佔據的內存和CPU,Python所要掃描的路徑等。另一個重要功能是和Python自己的命令行互動,從命令行讀取命令和參數。
3、random:用於生成隨機數的庫
Python標準庫中的random函數,可以生成隨機浮點數、整數、字元串,甚至幫助你隨機選擇列表序列中的一個元素,打亂一組數據等。
4、math:提供了數學常數和數學函數
標準庫中,Python定義了一些新的數字類型,以彌補之前的數字類型可能的不足。標準庫還包含了random包,用於處理隨機數相關的功能。math包補充了一些重要的數學常數和數學函數,比如pi、三角函數等等。
5、datetime:日期和時間的操作庫
日期和時間的管理並不複雜,但容易犯錯。Python的標準庫中對日期和時間的管理頗為完善,你不僅可以進行日期時間的查詢和變換,還可以對日期時間進行運算。通過這些標準庫,還可以根據需要控制日期時間輸出的文本格式
python有哪些庫
Python中6個最重要的庫:
第一、NumPy
NumPy是Numerical
Python的簡寫,是Python數值計算的基石。它提供多種數據結構、演算法以及大部分涉及Python數值計算所需的介面。NumPy還包括其他內容:
①快速、高效的多維數組對象ndarray
②基於元素的數組計算或數組間數學操作函數
③用於讀寫硬碟中基於數組的數據集的工具
④線性代數操作、傅里葉變換以及隨機數生成
除了NumPy賦予Python的快速數組處理能力之外,NumPy的另一個主要用途是在演算法和庫之間作為數據傳遞的數據容器。對於數值數據,NumPy數組能夠比Python內建數據結構更為高效地存儲和操作數據。
第二、pandas
pandas提供了高級數據結構和函數,這些數據結構和函數的設計使得利用結構化、表格化數據的工作快速、簡單、有表現力。它出現於2010年,幫助Python成為強大、高效的數據分析環境。常用的pandas對象是DataFrame,它是用於實現表格化、面向列、使用行列標籤的數據結構;以及Series,一種一維標籤數組對象。
pandas將表格和關係型資料庫的靈活數據操作能力與Numpy的高性能數組計算的理念相結合。它提供複雜的索引函數,使得數據的重組、切塊、切片、聚合、子集選擇更為簡單。由於數據操作、預處理、清洗在數據分析中是重要的技能,pandas將是重要主題。
第三、matplotlib
matplotlib是最流行的用於製圖及其他二維數據可視化的Python庫,它由John D.
Hunter創建,目前由一個大型開發者團隊維護。matplotlib被設計為適合出版的製圖工具。
對於Python編程者來說也有其他可視化庫,但matplotlib依然使用最為廣泛,並且與生態系統的其他庫良好整合。
第四、IPython
IPython項目開始於2001年,由Fernando
Pérez發起,旨在開發一個更具交互性的Python解釋器。在過去的16年中,它成為Python數據技術棧中最重要的工具之一。
儘管它本身並不提供任何計算或數據分析工具,它的設計側重於在交互計算和軟體開發兩方面將生產力最大化。它使用了一種執行-探索工作流來替代其他語言中典型的編輯-編譯-運行工作流。它還提供了針對操作系統命令行和文件系統的易用介面。由於數據分析編碼工作包含大量的探索、試驗、試錯和遍歷,IPython可以使你更快速地完成工作。
第五、SciPy
SciPy是科學計算領域針對不同標準問題域的包集合。以下是SciPy中包含的一些包:
①scipy.integrate數值積分常式和微分方程求解器
②scipy.linalg線性代數常式和基於numpy.linalg的矩陣分解
③scipy.optimize函數優化器和求根演算法
④scipy.signal信號處理工具
⑤scipy.sparse稀疏矩陣與稀疏線性系統求解器
SciPy與Numpy一起為很多傳統科學計算應用提供了一個合理、完整、成熟的計算基礎。
第六、scikit-learn
scikit-learn項目誕生於2010年,目前已成為Python編程者首選的機器學習工具包。僅僅七年,scikit-learn就擁有了全世界1500位代碼貢獻者。其中包含以下子模塊:
①分類:SVM、最近鄰、隨機森林、邏輯回歸等
②回歸:Lasso、嶺回歸等
③聚類:K-means、譜聚類等
④降維:PCA、特徵選擇、矩陣分解等
⑤模型選擇:網格搜索、交叉驗證、指標矩陣
⑥預處理:特徵提取、正態化
scikit-learn與pandas、statsmodels、IPython一起使Python成為高效的數據科學編程語言。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/257830.html