本文目錄一覽:
- 1、用python生成隨機數的幾種方法
- 2、如何用python的蒙特卡洛模擬生成新的數據
- 3、python基礎2:隨機數生成—random模塊、numpy中的random函數
- 4、如何用python模擬生成數據或日誌
- 5、求助用python從資料庫取數據動態生成表格的方法
用python生成隨機數的幾種方法
1 從給定參數的正態分布中生成隨機數
當考慮從正態分布中生成隨機數時,應當首先知道正態分布的均值和方差(標準差),有了這些,就可以調用python中現有的模塊和函數來生成隨機數了。這裡調用了Numpy模塊中的random.normal函數,由於邏輯非參簡單,所有直接貼上代碼如下:
import numpy as np# 定義從正態分布中獲取隨機數的函數def get_normal_random_number(loc, scale): “”” :param loc: 正態分布的均值 :param scale: 正態分布的標準差 :return:從正態分布中產生的隨機數 “”” # 正態分布中的隨機數生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模塊if __name__ == “__main__”: # 函數調用 n = get_normal_random_number(loc=2, scale=2) # 列印結果 print(n) # 結果:3.275192443463058
2 從給定參數的均勻分布中獲取隨機數的函數
考慮從均勻分布中獲取隨機數的時候,要事先知道均勻分布的下界和上界,然後調用Numpy模塊的random.uniform函數生成隨機數。
import numpy as np# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): “”” :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 “”” # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 主模塊if __name__ == “__main__”: # 函數調用 n = get_uniform_random_number(low=2, high=4) # 列印結果 print(n) # 結果:2.4462417140153114
3 按照指定概率生成隨機數
有時候我們需要按照指定的概率生成隨機數,比如已知盒子中每種顏色的球的比例,猜測下一次取出的球的顏色。在這裡介紹的問題和上面的例子相似,要求給定一個概率列表,從列表對應的數字列表或區間列表中生成隨機數,分兩部分討論。
3.1 按照指定概率從數字列表中隨機抽取數字
假設給定一個數字列表和一個與之對應的概率列表,兩個列表對應位置的元素組成的元組即表示該數字在數字列表中以多大的概率出現,那麼如何根據這些已知條件從數字列表中按概率抽取隨機數呢?在這裡我們考慮用均勻分布來模擬概率,代碼如下:
import numpy as npimport random# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): “”” :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 “”” # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個數字列表中以一定的概率取出對應區間中數字的函數def get_number_by_pro(number_list, pro_list): “”” :param number_list:數字列表 :param pro_list:數字對應的概率列表 :return:按概率從數字列表中抽取的數字 “”” # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模塊if __name__ == “__main__”: # 數字列表 num_list = [1, 2, 3, 4, 5] # 對應的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數調用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 列印結果 print(n) # 結果:1
3.2 按照指定概率從區間列表中的某個區間內生成隨機數
給定一個區間列表和一個與之對應的概率列表,兩個列表相應位置的元素組成的元組即表示某數字出現在某區間內的概率是多少,已知這些,我們如何生成隨機數呢?這裡我們通過兩次使用均勻分布達到目的,代碼如下:
import numpy as npimport random# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): “”” :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 “”” # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個數字列表中以一定的概率取出對應區間中數字的函數def get_number_by_pro(number_list, pro_list): “”” :param number_list:數字列表 :param pro_list:數字對應的概率列表 :return:按概率從數字列表中抽取的數字 “”” # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 從區間[number. number – 1]上隨機抽取一個值 num = get_uniform_random_number(number, number – 1) # 返回值 return num# 主模塊if __name__ == “__main__”: # 數字列表 num_list = [1, 2, 3, 4, 5] # 對應的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數調用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 列印結果 print(n) # 結果:3.49683787011193
如何用python的蒙特卡洛模擬生成新的數據
生成1~10的隨機數1000個:
import random
fp = open(“test”, ‘w’);
for i in range(1, 1000):
a = random.randint(1,10)
fp.write(str(a)+”\n”);
fp.close();
注意:寫入文件的不會在最後寫入,而是重新寫文件。
python基礎2:隨機數生成—random模塊、numpy中的random函數
在Python中可以用於隨機數生成的有兩種主要途徑,一是random模塊,另一個是numpy庫中random函數。
在我們日常使用中,如果是為了得到隨機的單個數,多考慮random模塊;如果是為了得到隨機小數或者整數的矩陣,就多考慮numpy中的random函數,當然numpy也可以的到隨機的單個數
一、random模塊
二、numpy庫中random函數
random模塊中將近有7個函數都是可以用來生成隨機數的:
作用:隨機生成一個 [0,1) 的浮點數
作用:隨機生成一個 [a,b) 的浮點數
作用:隨機生成一個 [a,b] 的整數
作用:從列表,元組,字元串、集合(可用於for循環的數據類型)中隨機選擇一個元素
作用:在生成的以a為始,每step遞增,以b為終這樣的一個整數序列中隨機選擇一個數
作用:打亂一個列表的元素順序
從序列population中隨機取出k個數;population的類型可以是列表、元組、集合、字元串;
在Numpy庫中,常用使用np.random.rand()、np.random.randn()和np.random.randint()隨機函數。
作用:返回一個或一組服從標準正態分布的隨機樣本值
備註:標準正態分布是以0為均數、以1為標準差的正態分布,記為N(0,1)。對應的正態分布曲線如下所示,即
作用:使用方法與np.random.randn()函數相同 ,通過本函數可以返回一個或一組服從「0~1」均勻分布的隨機樣本值。隨機樣本取值範圍是[0,1),不包括1
numpy.random.randint(low, high=None, size=None, dtype=’l’)
輸入:
low—–為最小值
high—-為最大值
size—–為數組維度大小
dtype—為數據類型,默認的數據類型是np.int。
作用: 返回隨機整數或整型數組,範圍區間為[low,high),包含low,不包含high; high沒有填寫時,默認生成隨機數的範圍是[0,low
np.random.random([size])
作用:生成[0,1)之間的浮點數,與np.random.rand()功能類似
np.random.choice(a,[ size, replace, p])
參考文檔1: 【python】numpy之random庫簡單的隨機數據生成.rand()、.randint()、.randn()、.random()等(一)
參考文檔2: Python中隨機數的生成
參考文檔3: numpy.random模塊常用函數
終於寫完了,我以為它很簡單的………………預計1小時,結果寫了2.5小時
如何用python模擬生成數據或日誌
簡單生成數據可用隨機數:random.random()
格式化的話,用numpy可生成數據或矩陣
求助用python從資料庫取數據動態生成表格的方法
一、可使用的第三方庫
python中處理excel表格,常用的庫有xlrd(讀excel)表、xlwt(寫excel)表、openpyxl(可讀寫excel表)等。xlrd讀數據較大的excel表時效率高於openpyxl,所以我在寫腳本時就採用了xlrd和xlwt這兩個庫。介紹及下載地址為: 這些庫文件都沒有提供修改現有excel表格內容的功能。一般只能將原excel中的內容讀出、做完處理後,再寫入一個新的excel文件。
二、常見問題
使用python處理excel表格時,發現兩個個比較難纏的問題:unicode編碼和excel中記錄的時間。
因為python的默認字元編碼都為unicode,所以列印從excel中讀出的中文或讀取中文名的excel表或sheet時,程序提示錯誤UnicodeEncodeError: ‘ascii’ codec can’t encode characters in position 0-2: ordinal not in range(128)。這是由於在windows中,中文使用了gb2312編碼方式,python將其當作unicode和ascii來解碼都不正確才報出的錯誤。使用VAR.encode(‘gb2312’)即可解決列印中文的問題。(很奇怪,有的時候雖然能列印出結果,但顯示的不是中文,而是一堆編碼。)若要從中文文件名的excel表中讀取數據,可在文件名前加『u』表示將該中文文件名採用unicode編碼。
有excel中,時間和日期都使用浮點數表示。可看到,當『2013年3月20日』所在單元格使用『常規』格式表示後,內容變為『41353』;當其單元格格式改變為日期後,內容又變為了『2013年3月20日』。而使用xlrd讀出excel中的日期和時間後,得到是的一個浮點數。所以當向excel中寫入的日期和時間為一個浮點數也不要緊,只需將表格的表示方式改為日期和時間,即可得到正常的表示方式。excel中,用浮點數1表示1899年12月31日。
三、常用函數
以下主要介紹xlrd、xlwt、datetime中與日期相關的函數。
import xlrd
import xlwt
from datetime
def testXlrd(filename):
book=xlrd.open_workbook(filename)
sh=book.sheet_by_index(0)
print “Worksheet name(s): “,book.sheet_names()[0]
print ‘book.nsheets’,book.nsheets
print ‘sh.name:’,sh.name,’sh.nrows:’,sh.nrows,’sh.ncols:’,sh.ncols
print ‘A1:’,sh.cell_value(rowx=0,colx=1)
#如果A3的內容為中文
print ‘A2:’,sh.cell_value(0,2).encode(‘gb2312’)
def testXlwt(filename):
book=xlwt.Workbook()
sheet1=book.add_sheet(‘hello’)
book.add_sheet(‘word’)
sheet1.write(0,0,’hello’)
sheet1.write(0,1,’world’)
row1 = sheet1.row(1)
row1.write(0,’A2′)
row1.write(1,’B2′)
sheet1.col(0).width = 10000
sheet2 = book.get_sheet(1)
sheet2.row(0).write(0,’Sheet 2 A1′)
sheet2.row(0).write(1,’Sheet 2 B1′)
sheet2.flush_row_data()
sheet2.write(1,0,’Sheet 2 A3′)
sheet2.col(0).width = 5000
sheet2.col(0).hidden = True
book.save(filename)
if __name__==’__main__’:
testXlrd(u’你好。xls’)
testXlwt(‘helloWord.xls’)
base=datetime.date(1899,12,31).toordinal()
tmp=datetime.date(2013,07,16).toordinal()
print datetime.date.fromordinal(tmp+base-1).weekday()
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/254117.html