本文目錄一覽:
用python寫識別圖片主要顏色的程序
# -*- coding: utf-8 -*-
import colorsys
def get_dominant_color(image):
#顏色模式轉換,以便輸出rgb顏色值
image = image.convert(‘RGBA’)
#生成縮略圖,減少計算量,減小cpu壓力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳過純黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) 13, 235)
y = (y – 16.0) / (235 – 16)
# 忽略高亮色
if y 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don’t completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color
if __name__==”__main__”:
from PIL import Image
import os
path = r’.\\pics\\’
fp = open(‘file_color.txt’,’w’)
for filename in os.listdir(path):
print path+filename
try:
color = get_dominant_color(Image.open(path+filename))
fp.write(‘The color of ‘+filename+’ is ‘+str(color)+’\n’)
except:
print “This file format is not support”
fp.close()
pics文件夾和python程序在一個目錄下,產生的文件名file_color.txt也在這個目錄下。
看看能否幫到你
python圖像處理初學者求助
Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。
1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件載入圖像,或者處理其他圖像, 或者從 scratch 創建。
要從文件載入圖像,可以使用open( )函數,在Image模塊中:
1
2
from PIL import Image
im = Image.open(“E:/photoshop/1.jpg”)
載入成功後,將返回一個Image對象,可以通過使用示例屬性查看文件內容:
1
2
3
print(im.format, im.size, im.mode)
(‘JPEG’, (600, 351), ‘RGB’)
format 這個屬性標識了圖像來源。如果圖像不是從文件讀取它的值就是None。size屬性是一個二元tuple,包含width和height(寬度和高度,單位都是px)。 mode 屬性定義了圖像bands的數量和名稱,以及像素類型和深度。常見的modes 有 「L」 (luminance) 表示灰度圖像, 「RGB」 表示真彩色圖像, and 「CMYK」 表示出版圖像。
如果文件打開錯誤,返回 IOError 錯誤。
只要你有了 Image 類的實例,你就可以通過類的方法處理圖像。比如,下列方法可以顯示圖像:
1
im.show()
2)讀寫圖像
PIL 模塊支持大量圖片格式。使用在 Image 模塊的 open() 函數從磁碟讀取文件。你不需要知道文件格式就能打開它,這個庫能夠根據文件內容自動確定文件格式。要保存文件,使用 Image 類的 save() 方法。保存文件的時候文件名變得重要了。除非你指定格式,否則這個庫將會以文件名的擴展名作為格式保存。
載入文件,並轉化為png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
“Python Image Library Test”
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +”.png”
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print(“Cannot convert”, infile)
save() 方法的第二個參數可以指定文件格式。
3)創建縮略圖
縮略圖是網路開發或圖像軟體預覽常用的一種基本技術,使用Python的Pillow圖像庫可以很方便的建立縮略圖,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob(“E:/photoshop/*.jpg”):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+”.thumbnail”,”JPEG”)
上段代碼對photoshop下的jpg圖像文件全部創建縮略圖,並保存,glob模塊是一種智能化的文件名匹配技術,在批圖像處理中經常會用到。
注意:Pillow庫不會直接解碼或者載入圖像柵格數據。當你打開一個文件,只會讀取文件頭信息用來確定格式,顏色模式,大小等等,文件的剩餘部分不會主動處理。這意味著打開一個圖像文件的操作十分快速,跟圖片大小和壓縮方式無關。
4)圖像的剪切、粘貼與合併操作
Image 類包含的方法允許你操作圖像部分選區,PIL.Image.Image.crop 方法獲取圖像的一個子矩形選區,如:
1
2
3
4
# crop, paste and merge
im = Image.open(“E:/photoshop/lena.jpg”)
box = (100,100,300,300)
region = im.crop(box)
矩形選區有一個4元元組定義,分別表示左、上、右、下的坐標。這個庫以左上角為坐標原點,單位是px,所以上訴代碼複製了一個 200×200 pixels 的矩形選區。這個選區現在可以被處理並且粘貼到原圖。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
當你粘貼矩形選區的時候必須保證尺寸一致。此外,矩形選區不能在圖像外。然而你不必保證矩形選區和原圖的顏色模式一致,因為矩形選區會被自動轉換顏色。
5)分離和合併顏色通道
對於多通道圖像,有時候在處理時希望能夠分別對每個通道處理,處理完成後重新合成多通道,在Pillow中,很簡單,如下:
1
2
r,g,b = im.split()
im = Image.merge(“RGB”, (r,g,b))
對於split( )函數,如果是單通道的,則返回其本身,否則,返回各個通道。
6)幾何變換
對圖像進行幾何變換是一種基本處理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函數的參數是一個新圖像大小的元祖,而rotate( )則需要輸入順時針的旋轉角度。在Pillow中,對於一些常見的旋轉作了專門的定義:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)顏色空間變換
在處理圖像時,根據需要進行顏色空間的轉換,如將彩色轉換為灰度:
1
2
cmyk = im.convert(“CMYK”)
gray = im.convert(“L”)
8)圖像濾波
如何用python將文件夾中圖片根據顏色分類
本文實例講述了Python通過PIL獲取圖片主要顏色並和顏色庫進行對比的方法。分享給大家供大家參考。具體分析如下:
這段代碼主要用來從圖片提取其主要顏色,類似Goolge和Baidu的圖片搜索時可以指定按照顏色搜索,所以我們先需要將每張圖片的主要顏色提取出來,然後將顏色劃分到與其最接近的顏色段上,然後就可以按照顏色搜索了。
在使用google或者baidu搜圖的時候會發現有一個圖片顏色選項,感覺非常有意思,有人可能會想這肯定是人為的去劃分的,呵呵,有這種可能,但是估計人會累死,開個玩笑,當然是通過機器識別的,海量的圖片只有機器識別才能做到。
那用python能不能實現這種功能呢?答案是:能
利用python的PIL模塊的強大的圖像處理功能就可以做到,下面上代碼:
複製代碼代碼如下:
import colorsys
def get_dominant_color(image):
#顏色模式轉換,以便輸出rgb顏色值
image = image.convert(‘RGBA’)
#生成縮略圖,減少計算量,減小cpu壓力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳過純黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) 13, 235)
y = (y – 16.0) / (235 – 16)
# 忽略高亮色
if y 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don’t completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color
使用方法:
from PIL import Image
print get_dominant_color(Image.open(‘logo.jpg’))
這樣就會返回一個rgb顏色,但是這個值是很精確的範圍,那我們如何實現百度圖片那樣的色域呢??
其實方法很簡單,r/g/b都是0-255的值,我們只要把這三個值分別劃分相等的區間,然後組合,取近似值。例如:劃分為0-127,和128-255,然後自由組合,可以出現八種組合,然後從中挑出比較有代表性的顏色即可。
當然我只是舉一個例子,你也可以劃分的更細,那樣顯示的顏色就會更準確~~大家趕快試試吧
python的pil模塊怎麼判斷圖片是否相同
利用python的PIL模塊的強大的圖像處理功能就可以做到,下面上代碼:
import colorsys
def get_dominant_color(image):
#顏色模式轉換,以便輸出rgb顏色值
image = image.convert(‘RGBA’)
#生成縮略圖,減少計算量,減小cpu壓力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳過純黑色
if a == 0:
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/246539.html