本文目錄一覽:
- 1、用python怎麼爬取B站每一個分區的總播放量?
- 2、如何用 Python 爬取需要登錄的網站
- 3、使用python bs4爬b站番劇索引無法爬取所有內容?
- 4、Python爬蟲:如何在一個月內學會爬取大規模數
- 5、python爬蟲在爬B站網頁時出現403錯誤,已經添加了ua還是出錯怎麼辦?
- 6、python怎樣爬取整站
用python怎麼爬取B站每一個分區的總播放量?
如果你要的數據量很小的話,python2自帶的urllib2寫爬蟲就可以,如果你要的數據量比較大,就需要專門的爬蟲框架scrapy了。
一個爬蟲,你首先要分析你要爬取的網頁的頁面結構,也就是你需要知道在DOM樹種你要的元素在哪,然後用能操作DOM的包,比如beautifulsoup或者xpath等,解析DOM,獲取你想要的值,然後保存起來
如何用 Python 爬取需要登錄的網站
最近我必須執行一項從一個需要登錄的網站上爬取一些網頁的操作。它沒有我想像中那麼簡單,因此我決定為它寫一個輔助教程。
在本教程中,我們將從我們的bitbucket賬戶中爬取一個項目列表。
教程中的代碼可以從我的 Github 中找到。
我們將會按照以下步驟進行:
提取登錄需要的詳細信息
執行站點登錄
爬取所需要的數據
在本教程中,我使用了以下包(可以在 requirements.txt 中找到):
Python
1
2
requests
lxml
步驟一:研究該網站
打開登錄頁面
進入以下頁面 「bitbucket.org/account/signin」。你會看到如下圖所示的頁面(執行註銷,以防你已經登錄)
仔細研究那些我們需要提取的詳細信息,以供登錄之用
在這一部分,我們會創建一個字典來保存執行登錄的詳細信息:
1. 右擊 「Username or email」 欄位,選擇「查看元素」。我們將使用 「name」 屬性為 「username」 的輸入框的值。「username」將會是 key 值,我們的用戶名/電子郵箱就是對應的 value 值(在其他的網站上這些 key 值可能是 「email」,「 user_name」,「 login」,等等)。
2. 右擊 「Password」 欄位,選擇「查看元素」。在腳本中我們需要使用 「name」 屬性為 「password」 的輸入框的值。「password」 將是字典的 key 值,我們輸入的密碼將是對應的 value 值(在其他網站key值可能是 「userpassword」,「loginpassword」,「pwd」,等等)。
3. 在源代碼頁面中,查找一個名為 「csrfmiddlewaretoken」 的隱藏輸入標籤。「csrfmiddlewaretoken」 將是 key 值,而對應的 value 值將是這個隱藏的輸入值(在其他網站上這個 value 值可能是一個名為 「csrftoken」,「 authenticationtoken」 的隱藏輸入值)。列如:「Vy00PE3Ra6aISwKBrPn72SFml00IcUV8」。
最後我們將會得到一個類似這樣的字典:
Python
1
2
3
4
5
payload = {
“username”: “lt;USER NAMEgt;”,
“password”: “lt;PASSWORDgt;”,
“csrfmiddlewaretoken”: “lt;CSRF_TOKENgt;”
}
請記住,這是這個網站的一個具體案例。雖然這個登錄表單很簡單,但其他網站可能需要我們檢查瀏覽器的請求日誌,並找到登錄步驟中應該使用的相關的 key 值和 value 值。
步驟2:執行登錄網站
對於這個腳本,我們只需要導入如下內容:
Python
1
2
import requests
from lxml import html
首先,我們要創建 session 對象。這個對象會允許我們保存所有的登錄會話請求。
Python
1
session_requests = requests.session()
第二,我們要從該網頁上提取在登錄時所使用的 csrf 標記。在這個例子中,我們使用的是 lxml 和 xpath 來提取,我們也可以使用正則表達式或者其他的一些方法來提取這些數據。
Python
1
2
3
4
5
login_url = “n/?next=/”
result = session_requests.get(login_url)
tree = html.fromstring(result.text)
authenticity_token = list(set(tree.xpath(“//input[@name=’csrfmiddlewaretoken’]/@value”)))[0]
**更多關於xpath 和lxml的信息可以在這裡找到。
接下來,我們要執行登錄階段。在這一階段,我們發送一個 POST 請求給登錄的 url。我們使用前面步驟中創建的 payload 作為 data 。也可以為該請求使用一個標題並在該標題中給這個相同的 url 添加一個參照鍵。
Python
1
2
3
4
5
result = session_requests.post(
login_url,
data = payload,
headers = dict(referer=login_url)
)
步驟三:爬取內容
現在,我們已經登錄成功了,我們將從 bitbucket dashboard 頁面上執行真正的爬取操作。
Python
1
2
3
4
5
url = ‘/overview’
result = session_requests.get(
url,
headers = dict(referer = url)
)
為了測試以上內容,我們從 bitbucket dashboard 頁面上爬取了項目列表。我們將再次使用 xpath 來查找目標元素,清除新行中的文本和空格並列印出結果。如果一切都運行 OK,輸出結果應該是你 bitbucket 賬戶中的 buckets / project 列表。
Python
1
2
3
4
5
tree = html.fromstring(result.content)
bucket_elems = tree.findall(“.//span[@class=’repo-name’]/”)
bucket_names = [bucket.text_content.replace(“n”, “”).strip() for bucket in bucket_elems]
print bucket_names
你也可以通過檢查從每個請求返回的狀態代碼來驗證這些請求結果。它不會總是能讓你知道登錄階段是否是成功的,但是可以用來作為一個驗證指標。
例如:
Python
1
2
result.ok # 會告訴我們最後一次請求是否成功
result.status_code # 會返回給我們最後一次請求的狀態
使用python bs4爬b站番劇索引無法爬取所有內容?
這些內容是通過非同步介面返回的,前端頁面上當然沒有,你需要去請求後端對應的介面。
Python爬蟲:如何在一個月內學會爬取大規模數
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常複雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這裡給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分散式爬蟲,實現大規模並發採集,提升效率
– –
學習 Python 包並實現基本的爬蟲過程
大部分Python爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事百科、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
– –
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是乾淨的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更乾淨的數據。
– –
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常複雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
– –
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這裡要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
– –
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
– –
分散式Python爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分散式爬蟲。
分散式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的
python爬蟲在爬B站網頁時出現403錯誤,已經添加了ua還是出錯怎麼辦?
403是禁止訪問,就是伺服器不讓你訪問他的網站。
爬B站需要添加虛擬的瀏覽器信息,讓伺服器以為你是真人而不是解析器。
python怎樣爬取整站
如果是python2.7,利用urllib和urllib2進行爬取,對於要爬取的網站,需要做一些分析,比如要爬取的內容是登錄後才看得到的,那就先要實現模擬登陸,再進行爬取。爬取時一般是發起get請求,攜帶的參數可以通過瀏覽器的開發者模式分析網頁請求來查看。如果是python3,原理也差不多,用的模塊稍微不一樣一些
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/242578.html