本文目錄一覽:
- 1、cartopy與 Folium 哪個強大
- 2、如何系統地自學 Python
- 3、Cartopy繪圖系列 | 繪製全球溫度場+風矢量場
- 4、Python氣象數據處理與繪圖(12):軌跡(颱風路徑,寒潮路徑,水汽軌跡)繪製
cartopy與 Folium 哪個強大
個人推薦Cartopy。
Cartopy是一個Python包,用於地理空間數據處理,以便生成地圖和其他地理空間數據分析。 Cartopy利用了強大的PROJ.4、NumPy和Shapely庫,並在Matplotlib之上構建了一個編程介面,用於創建發布質量的地圖。 cartopy的主要特點是面向對象的投影定義,以及在投影之間轉換點、線、向量、多邊形和圖像的能力。 您會發現 Cartopy 對於大尺度/小比例尺數據特別有用,在這些數據中,球數據的笛卡爾假設通常會被打破。
folium是js上著名的地理信息可視化庫leaflet.js為Python提供的介面,通過它,我們可以通過在Python端編寫代碼操縱數據,來調用leaflet的相關功能,基於內建的osm或自行獲取的osm資源和地圖原件進行地理信息內容的可視化,以及製作優美的可交互地圖。其語法格式類似ggplot2,是通過不斷添加圖層元素來定義一個Map對象,最後以幾種方式將Map對象展現出來。
如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、遊戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
用一種方法,最好是只有一種方法來做一件事。
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇蹟只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這麼做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise…
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術湧進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、遊戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考鎚子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這裡列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
請點擊輸入圖片描述
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這裡我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML CSS 設計與構建網站」:HTML CSS設計與構建網站 (豆瓣)
…
列到這裡已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這裡所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這裡推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這裡推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
Cartopy繪圖系列 | 繪製全球溫度場+風矢量場
除此之外,我想給大家推薦 Python 的一種製圖工具包 Cartopy,(內容比Basemap更加豐富和實用)
為什麼要選用Cartopy ?
官網教程:
1)Anaconda環境
如果你正在使用 Python 的科學計算髮行版 Anaconda,安裝 Cartopy 非常容易。
命令行輸入: conda install -c conda-forge cartopy
2)Windows環境
命令行輸入:pip install cartopy
3)可以切換國內像源,安裝速度更快
命令行輸入:pip install -i cartopy
測試是否安裝成功:
啟動python命令行工具,輸入 import cartopy 如果沒有報錯,則安裝成功!
往往我們需要繪製自定義範圍的研究區域,需要繪製指定shapefile文件的邊界!
Python氣象數據處理與繪圖(12):軌跡(颱風路徑,寒潮路徑,水汽軌跡)繪製
寒潮是筆者主要的研究方向,寒潮路徑作為寒潮重要的特徵,是寒潮預報的重點之一,同樣的道理也適用在颱風研究以及降水的水汽來源研究中。關於路徑的計算以及獲取方法(比如軌跡倒推,模型追蹤等等方法,颱風有自己現成的數據集,比如ibtracs數據集等等)並不在本文的介紹範圍之內,本文主要介紹在獲取了相應的路徑坐標後,如何在圖中美觀的展現。
上圖展現了近40年東北亞區域的冬季冷空氣活動路徑,繪製這類圖需要的數據只需為每條路徑的N個三維坐標點,第一第二維分別為longitude和latitudee,第三維則比較隨意,根據需要選擇,比如說需要體現高度,那就用高度坐標,需要體現冷空氣強度,那就用溫度數據,水汽可以用相對濕度,颱風也可以用速度等等。
通常此類數據是由.txt(.csv)等格式存儲的,讀取和處理方法可參考我的「Python氣象數據處理與繪圖(1):數據讀取」,本文主要介紹繪圖部分。
當然根據需要,也可以直接繪製兩維的軌跡,即取消掉顏色數組,用最簡單的plot語句,循環繪製即可。
有一個陷阱需要大家注意的是,當軌跡跨越了東西半球時,即穿越了0°或者360°經線時,它的連接方式是反向繞一圈,比如下圖所示,你想要藍色的軌跡,然而很有可能得到綠色的,這是因為你的網格數組的邊界是斷點,系統不會自動識別最短路徑,只會在數組中直接想連,因為這不是循環數組。
我目前的解決辦法是這樣的:如果你的數據是0°-360°格式,那麼變為-180°-180°的格式,反之相互轉換。但是如果你的數據兩種都出現了斷點,也就是繞了地球一圈多,那無論怎樣都么得辦法了,我目前的思路是將數據轉換成極坐標數據格式,理論上是可行的,CARTOPY的繪圖也是支持極坐標數據的,具體實施還需要再試試。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/238190.html