本文目錄一覽:
- 1、python如何表示a+bi這個複數?注意實部虛部是字母而不是確定常數
- 2、python 可視化界面怎麼做
- 3、python數據分析師需要掌握什麼技能?
- 4、python 二分查找演算法函數bi_search(),該函數實現檢索任意一個整數在 prime() 函數生成的
- 5、現在市場上有PowerBi或者Tableau可以做很好的圖表,那還有人用Python來製作可視化圖表嗎?有什麼優點?
python如何表示a+bi這個複數?注意實部虛部是字母而不是確定常數
python可以使用內置函數complex()創建一個複數對象:
c = complex(a, b)
則c是一個值為a+bi的複數對象。
python 可視化界面怎麼做
首先,如果沒有安裝python和PyQt軟體的請先直接搜索下載並安裝。python是一個開源軟體,因此都是可以在網上免費下載的,最新版本即可。下載完成後,我們先打開PyQt designer。
2
打開後,首先是一個默認的新建窗口界面,在這裡我們就選擇默認的窗口即可。
3
現在是一個完全空白的窗口。第一步我們要先把所有的設計元素都拖進這個窗口。我們先拖入一個「Label」,就是一個不可編輯的標籤。
隨後我們再拖入一個可以編輯的「Line Edit」
最後我們拖入最後一個元素:「PushButton」按鈕,也就是平時我們所點的確定。
目前我們已經把所有所需要的元素都拖入了新建的窗口。對於每一個元素,我們都可以雙擊進行屬性值的修改,此時我們僅需要雙擊改個名字即可
此時我們已經完成了一半,接下來需要對動作信號進行操作。我們需要先切入編輯信號的模式
此時把滑鼠移動到任意元素,都會發現其變成紅色,代表其被選中。
當我們選中pushbutton後,繼續拖動滑鼠指向上面的line edit,會發現由pushbutton出現一個箭頭指向了line edit,代表pushbutton的動作會對line edit進行操作。
隨即會彈出一個配置連接窗口。左邊的是pushbutton的操作,我們選擇clicked(),即點擊pushbutton。
右邊是對line edit的操作,我們選擇clear(),即清楚line edit中的內容。
最後我們點擊確定。
保存完成後,我們在PyQt中的操作就已經完成了。保存的文件名我們命名為test,PyQt生成的設計文件後綴是.ui。
python數據分析師需要掌握什麼技能?
首先是基礎篇
1、首先是Excel,貌似這個很簡單,其實未必。Excel不僅能夠做簡單二維表、複雜嵌套表,能畫折線圖/Column chart/Bar chart/Area chart/餅圖/雷達圖/Combo char/散點圖/Win Loss圖等,而且能實現更高級的功能,包括透視表(類似於BI的多維分析模型Cube),以及Vlookup等複雜函數,處理100萬條以內的數據沒有大問題。最後,很多更高級的工具都有Excel插件,例如一些AI Machine Learning的開發工具。
2. SQL(資料庫)
我們都知道數據分析師每天都會處理海量的數據,這些數據來源於資料庫,那麼怎麼從資料庫取數據?如何建立兩表、三表之間的關係?怎麼取到自己想要的特定的數據?等等這些數據選擇問題就是你首要考慮的問題,而這些問題都是通過SQL解決的,所以SQL是數據分析的最基礎的技能。
3. 統計學基礎
數據分析的前提要對數據有感知,數據如何收集?數據整體分布是怎樣的?如果有時間維度的話隨著時間的變化是怎樣的?數據的平均值是什麼?數據的最大值最小值指什麼?數據相關與回歸、時間序列分析和預測等等。
4、掌握可視化工具,比如BI,如Cognos/Tableau/FineBI等,具體看企業用什麼工具,像我之前用的是FineBI。這些工具做可視化非常方便,特別是分析報告能含這些圖,一定會吸引高層領導的眼球,一目了然了解,洞察業務的本質。另外,作為專業的分析師,用多維分析模型Cube能夠方便地自定義報表,效率大大提升。
進階階段需要掌握的:
1、系統的學好統計學
純粹的機器學習講究演算法預測能力和實現,但是統計一直就強調「可解釋性」。比如說,針對今天微博股票發行就上升20%,你把你的兩個預測股票上漲還是下跌的model套在新浪的例子上,然後給你的上司看。統計學就是這樣的作用。
數據挖掘相關的統計方法(多元Logistic回歸分析、非線性回歸分析、判別分析等)
定量方法(時間軸分析、概率模型、優化)
決策分析(多目的決策分析、決策樹、影響圖、敏感性分析)
樹立競爭優勢的分析(通過項目和成功案例學習基本的分析理念)
資料庫入門(數據模型、資料庫設計)
預測分析(時間軸分析、主成分分析、非參數回歸、統計流程式控制制)
數據管理(ETL(Extract、Transform、Load)、數據治理、管理責任、元數據)
優化與啟發(整數計劃法、非線性計劃法、局部探索法、超啟發(模擬退火、遺傳演算法))
大數據分析(非結構化數據概念的學習、MapReduce技術、大數據分析方法)
數據挖掘(聚類(k-means法、分割法)、關聯性規則、因子分析、存活時間分析)
其他,以下任選兩門(社交網路、文本分析、Web分析、財務分析、服務業中的分析、能源、健康醫療、供應鏈管理、綜合營銷溝通中的概率模型)
風險分析與運營分析的計算機模擬
軟體層面的分析學(組織層面的分析課題、IT與業務用戶、變革管理、數據課題、結果的展現與傳達方法)
2、掌握AI Machine Learning演算法,會用工具(比如Python/R)進行建模。
傳統的BI分析能回答過去發生了什麼?現在正在發生什麼?但對於未來會發生什麼?必須靠演算法。雖然像Tableau、FineBI等自助式BI已經內置了一部分分析模型,但是分析師想要更全面更深度的探索,需要像Python/R的數據挖掘工具。另外大數據之間隱藏的關係,靠傳統工具人工分析是不可能做到的,這時候交由演算法去實現,無疑會有更多的驚喜。
其中,面向統計分析的開源編程語言及其運行環境「R」備受矚目。R的強項不僅在於其包含了豐富的統計分析庫,而且具備將結果進行可視化的高品質圖表生成功能,並可以通過簡單的命令來運行。此外,它還具備稱為CRAN(The Comprehensive R Archive Network)的包擴展機制,通過導入擴展包就可以使用標準狀態下所不支持的函數和數據集。R語言雖然功能強大,但是學習曲線較為陡峭,個人建議從python入手,擁有豐富的statistical libraries,NumPy ,SciPy.org ,Python Data Analysis Library,matplotlib: python plotting。
以上我的回答希望對你有所幫助
python 二分查找演算法函數bi_search(),該函數實現檢索任意一個整數在 prime() 函數生成的
def prime(n):
if n=2:
return []
result=[False,False]+[True]*(n-2)
for i in range(len(result)):
if result[i]==True:
for j in range(2*i,len(result),i):
result[j]=False
return [i for i in range(len(result)) if result[i]==True]
def bi_search(prime,primelist,start,end):
if startend :
return -1
mid=(start+end)//2
if primelist[mid]==prime:
return mid
elif primelist[mid]prime:
end=mid-1
else:
start=mid+1
return bi_search(prime,primelist,start,end)
if __name__==’__main__’:
n=int(raw_input())
primelist=prime(n)
num=raw_input()
while num:
num=int(num)
index=bi_search(num,primelist,0,len(primelist)-1)
print(index)
num=raw_input()
現在市場上有PowerBi或者Tableau可以做很好的圖表,那還有人用Python來製作可視化圖表嗎?有什麼優點?
鏈接:
提取碼:yz10
PythonTableau:商業數據分析與可視化。Tableau的程序很容易上手,各公司可以用它將大量數據拖放到數字「畫布」上,轉眼間就能創建好各種圖表。這一軟體的理念是,界面上的數據越容易操控,公司對自己在所在業務領域裡的所作所為到底是正確還是錯誤,就能了解得越透徹。
快速分析:在數分鐘內完成數據連接和可視化。Tableau 比現有的其他解決方案快 10 到 100 倍。大數據,任何數據:無論是電子表格、資料庫還是 Hadoop 和雲服務,任何數據都可以輕鬆探索。
課程目錄:
前置課程-Python在諮詢、金融、四大等領域的應用以及效率提升
Python基礎知識
Python入門:基於Anaconda與基於Excel的Python安裝和界面
簡單的數學計算
Python數據分析-時間序列2-數據操作與繪圖
Python數據分析-時間序列3-時間序列分解
……
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/232025.html