本文目錄一覽:
- 1、《利用python進行數據分析》讀書筆記1
- 2、如何用python進行數據分析
- 3、python數據統計分析
- 4、利用python實現數據分析
- 5、Python數據分析: 初識Pandas,理解Pandas實現和原理
《利用python進行數據分析》讀書筆記1
讀取json內容:
建立只有『tz』時區欄位的列表。因為不是每個字典實例都有tz欄位,所以要加上if ‘tz’ in rec。否則會報錯。
統計每種時區的出現次數:
方法一:
先統計次數,生成{時區1:次數,時區2:次數….}形式的字典。
再對字典進行排序。
統計次數方法(1):
統計次數方法(2):
排序
其中counts.items()是將字典中的鍵值對以元組的形式放進列表裡。
例:counts:
{u’America/Montreal’: 9, u’America/Anchorage’: 5, u’Asia/Seoul’: 5}
counts.items():
[(u’America/Montreal’, 9), (u’America/Anchorage’, 5), (u’Asia/Seoul’, 5)]
而這句:value_key_pairs=[(count,tz) for tz, count in counts.items()]則是對返回的鍵,值對元組的位置做了調換。
例:[(9, u’America/Montreal’), (5, u’America/Anchorage’), (5, u’Asia/Seoul’)]
value_key_pairs.sort()中 list.sort()方法只能用於列表,是對原列表進行排序。默認升序。需要降序則value_key_pairs.sort(reverse=False)
關於排序的知識詳細參考:
方法二:使用Counter類
Counter類的目的是用來跟蹤值出現的次數。它是一個無序的容器類型,以字典的鍵值對形式存儲,其中元素作為key,其計數作為value。計數值可以是任意的Interger(包括0和負數)。Counter類和其他語言的bags或multisets很相似。
詳細參考:
方法三:用pandas計數
注意裡面有空值
此時的tz_counts如下。注意空字元串變成了unknow。以及增加了missing計數。
使用前十的數據,利用plot方法生成一張水平條形圖。
總結:
1.往字典里存數據需要先初始化字典。可使用defaultdict函數:
2.清洗數據,有的數據沒有某個欄位,一是要替換掉這些缺失值,可用fillna方法替換。二是要注意有沒有空字元串,這種數據可通過布爾型數組索引來替換掉。
3.對某個欄位的值的出現次數進行統計,可使用三種方法
(1)新建一個字典,用以統計每個值的出現次數。再將該字典轉換為列表,對列表進行排序。
(2)使用counter類進行次數統計並排序。
(3)先將json轉換為DataFrame對象,再對其tz欄位使用pandas的value_counts()方法進行次數統計並排序。
如何用python進行數據分析
1、Python數據分析流程及學習路徑
數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。
根據每個部分需要用到的工具,Python數據分析的學習路徑如下:
相關推薦:《Python入門教程》
2、利用Python讀寫數據
Python讀寫數據,主要包括以下內容:
我們以一小段代碼來看:
可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。
3、利用Python處理和計算數據
在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。
Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。
Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。
5、利用Python數據可視化
數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。
python數據統計分析
1. 常用函數庫
scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。
scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。
2. 小樣本數據的正態性檢驗
(1) 用途
夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。
正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。
(2) 示例
(3) 結果分析
返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。
3. 檢驗樣本是否服務某一分布
(1) 用途
科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。
(2) 示例
(3) 結果分析
生成300個服從N(0,1)標準正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。
4.方差齊性檢驗
(1) 用途
方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。
(2) 示例
(3) 結果分析
返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。
5. 圖形描述相關性
(1) 用途
最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。
(2) 示例
(3) 結果分析
從圖中可以看到明顯的正相關趨勢。
6. 正態資料的相關分析
(1) 用途
皮爾森相關係數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關係數表示線性相關程度,其取值範圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關係數為0。第二個值為p-value,統計學上,一般當p-value0.05時,可以認為兩變數存在相關性。
7. 非正態資料的相關分析
(1) 用途
斯皮爾曼等級相關係數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關係,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關係數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。
8. 單樣本T檢驗
(1) 用途
單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。
(2) 示例
(3) 結果分析
本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。
9. 兩獨立樣本T檢驗
(1) 用途
由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。
10. 配對樣本T檢驗
(1) 用途
配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。
11. 單因素方差分析
(1) 用途
方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。
單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。
當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。
12. 多因素方差分析
(1) 用途
當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。
(2) 示例
(3) 結果分析
上述程序定義了公式,公式中,”~”用於隔離因變數和自變數,」+「用於分隔各個自變數, “:”表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。
13. 卡方檢驗
(1) 用途
上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬鬆,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。
基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
(2) 示例
(3) 結果分析
卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。
14. 單變數統計分析
(1) 用途
單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關係。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標準差、協方差、變異係數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。
此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。
15. 多元線性回歸
(1) 用途
多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。
16. 邏輯回歸
(1) 用途
當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P0.05則認為自變數具有統計學意義。
利用python實現數據分析
鏈接:
提取碼:7234
煉數成金:Python數據分析。Python是一種面向對象、直譯式計算機程序設計語言。也是一種功能強大而完善的通用型語言,已經具有十多年的發展歷史,成熟且穩定。Python 具有腳本語言中最豐富和強大的類庫,足以支持絕大多數日常應用。 Python語法簡捷而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠很輕鬆的把用其他語言製作的各種模塊(尤其是C/C++)輕鬆地聯結在一起。
課程將從Python的基本使用方法開始,一步步講解,從ETL到各種數據分析方法的使用,並結合實例,讓學員能從中借鑒學習。
課程目錄:
Python基礎
Python的概覽——Python的基本介紹、安裝與基本語法、變數類型與運算符
了解Python流程式控制制——條件、循環語句與其他語句
常用函數——函數的定義與使用方法、主要內置函數的介紹
…..
Python數據分析: 初識Pandas,理解Pandas實現和原理
本文的文字及圖片來源於網路,僅供學習、交流使用,不具有任何商業用途,版權歸原作者所有,如有問題請及時聯繫我們以作處理
01 重要的前言
這段時間和一些做數據分析的同學閑聊,我發現數據分析技能入門階段存在一個普遍性的問題,很多憑著興趣入坑的同學,都能夠很快熟悉Python基礎語法,然後不約而同的一頭扎進《利用Python進行數據分析》這本經典之中,硬著頭皮啃完之後,好像自己什麼都會了一點,然而實際操作起來既不知從何操起,又漏洞百出。
至於原因嘛,理解不夠,實踐不夠是兩條老牌的攔路虎,只能靠自己來克服。還有一個非常有意思且經常被忽視的因素——陷入舉三反一的懵逼狀態。
什麼意思呢?假如我是個旱鴨子,想去學游泳,教練很認真的給我剖析了蛙泳的動作,扶著我的腰讓我在水裡劃拉了5分鐘,接著馬上給我講解了蝶泳,又是劃拉了5分鐘,然後又硬塞給我潛泳的姿勢,依然是劃拉5分鐘。最後,教練一下子把我丟進踩不到底的泳池,給我吶喊助威。
作為一個還沒入門的旱鴨子,教練傾囊授了我3種游泳技巧,讓我分別實踐了5分鐘。這樣做的結果就是我哪一種游泳技巧也沒學會,只學會了喝水。當一個初學者一開始就陷入針對單個問題的多種解決方法,而每一種方法的實踐又淺嘗輒止,在面對具體問題時往往會手忙腳亂。
拿Pandas來說,它的多種構造方式,多種索引方式以及類似效果的多種實現方法,很容易把初學者打入舉三反一的懵逼狀態。所以,盡量避開這個坑也是我寫Pandas基礎系列的初衷,希望通過梳理和精簡知識點的方式,給需要的同學一些啟發。目前暫定整個基礎系列分為4篇,基礎篇過後便是有趣的實戰篇。
下面開始進入正題(我真是太嘮叨了)。
02 Pandas簡介
江湖上流傳著這麼一句話——分析不識潘大師(PANDAS),縱是老手也枉然。
Pandas是基於Numpy的專業數據分析工具,可以靈活高效的處理各種數據集,也是我們後期分析案例的神器。它提供了兩種類型的數據結構,分別是DataFrame和Series,我們可以簡單粗暴的把DataFrame理解為Excel裡面的一張表,而Series就是表中的某一列,後面學習和用到的所有Pandas騷操作,都是基於這些表和列進行的操作(關於Pandas和Excel的形象關係,這裡推薦我的好朋友張俊紅寫的《對比EXCEL,輕鬆學習Python數據分析》)。
這裡有一點需要強調,Pandas和Excel、SQL相比,只是調用和處理數據的方式變了,核心都是對源數據進行一系列的處理,在正式處理之前,更重要的是謀定而後動,明確分析的意義,理清分析思路之後再處理和分析數據,往往事半功倍。
03 創建、讀取和存儲
1、創建
在Pandas中我們想要構造下面這一張表應該如何操作呢?
別忘了,第一步一定是先導入我們的庫——import pandas as pd
構造DataFrame最常用的方式是字典+列表,語句很簡單,先是字典外括,然後依次打出每一列標題及其對應的列值(此處一定要用列表),這裡列的順序並不重要:
左邊是jupyter notebook中dataframe的樣子,如果對應到excel中,他就是右邊表格的樣子,通過改變columns,index和values的值來控制數據。
PS,如果我們在創建時不指定index,系統會自動生成從0開始的索引。
2、 讀取
更多時候,我們是把相關文件數據直接讀進PANDAS中進行操作,這裡介紹兩種非常接近的讀取方式,一種是CSV格式的文件,一種是EXCEL格式(.xlsx和xls後綴)的文件。
讀取csv文件:
engine是使用的分析引擎,讀取csv文件一般指定python避免中文和編碼造成的報錯。而讀取Excel文件,則是一樣的味道:
非常easy,其實read_csv和read_excel還有一些參數,比如header、sep、names等,大家可以做額外了解。實踐中數據源的格式一般都是比較規整的,更多情況是直接讀取。
3、存儲
存儲起來一樣非常簡單粗暴且相似:
04 快速認識數據
這裡以我們的案例數據為例,迅速熟悉查看N行,數據格式概覽以及基礎統計數據。
1、查看數據,掐頭看尾
很多時候我們想要對數據內容做一個總覽,用df.head()函數直接可以查看默認的前5行,與之對應,df.tail()就可以查看數據尾部的5行數據,這兩個參數內可以傳入一個數值來控制查看的行數,例如df.head(10)表示查看前10行數據。
2、 格式查看
df.info()幫助我們一步摸清各列數據的類型,以及缺失情況:
從上面直接可以知道數據集的行列數,數據集的大小,每一列的數據類型,以及有多少條非空數據。
3、統計信息概覽
快速計算數值型數據的關鍵統計指標,像平均數、中位數、標準差等等。
我們本來有5列數據,為什麼返回結果只有兩列?那是因為這個操作只針對數值型的列。其中count是統計每一列的有多少個非空數值,mean、std、min、max對應的分別是該列的均值、標準差、最小值和最大值,25%、50%、75%對應的則是分位數。
05 列的基本處理方式
這裡,我們採用SQL四大法寶的邏輯來簡單梳理針對列的基本處理方式——增、刪、選、改。
溫馨提示:使用Pandas時,盡量避免用行或者EXCEL操作單元格的思維來處理數據,要逐漸養成一種列向思維,每一列是同宗同源,處理起來是嗖嗖的快。
1、增
增加一列,用df[『新列名』] = 新列值的形式,在原數據基礎上賦值即可:
2、刪:
我們用drop函數制定刪除對應的列,axis = 1表示針對列的操作,inplace為True,則直接在源數據上進行修改,否則源數據會保持原樣。
3、選:
想要選取某一列怎麼辦?df[『列名』]即可:
選取多列呢?需要用列表來傳遞:df[[『第一列』,『第二列』,『第三列』…]]
4、 改:
好事多磨,複雜的針對特定條件和行列的篩選、修改,放在後面結合案例細講,這裡只講一下最簡單的更改:df[『舊列名』] = 某個值或者某列值,就完成了對原列數值的修改。
06 常用數據類型及操作
1、字元串
字元串類型是最常用的格式之一了,Pandas中字元串的操作和原生字元串操作幾乎一毛一樣,唯一不同的是需要在操作前加上”.str”。
小Z溫馨提示:我們最初用df2.info()查看數據類型時,非數值型的列都返回的是object格式,和str類型深層機制上的區別就不展開了,在常規實際應用中,我們可以先理解為object對應的就是str格式,int64對應的就是int格式,float64對應的就是float格式即可。
在案例數據中,我們發現來源明細那一列,可能是系統導出的歷史遺留問題,每一個字元串前面都有一個「-」符號,又丑又無用,所以把他給拿掉:
一般來說清洗之後的列是要替換掉原來列的:
2、 數值型
數值型數據,常見的操作是計算,分為與單個值的運算,長度相等列的運算。
以案例數據為例,源數據訪客數我們是知道的,現在想把所有渠道的訪客都加上10000,怎麼操作呢?
只需要選中訪客數所在列,然後加上10000即可,pandas自動將10000和每一行數值相加,針對單個值的其他運算(減乘除)也是如此。
列之間的運算語句也非常簡潔。源數據是包含了訪客數、轉化率和客單價,而實際工作中我們對每個渠道貢獻的銷售額更感興趣。(銷售額 = 訪客數 X 轉化率 X 客單價)
對應操作語句:df[『銷售額』] = df[『訪客數』] * df[『轉化率』] * df[『客單價』]
但為什麼瘋狂報錯?
導致報錯的原因,是數值型數據和非數值型數據相互計算導致的。PANDAS把帶「%」符號的轉化率識別成字元串類型,我們需要先拿掉百分號,再將這一列轉化為浮點型數據:
要注意的是,這樣操作,把9.98%變成了9.98,所以我們還需要讓支付轉化率除以100,來還原百分數的真實數值:
然後,再用三個指標相乘計算銷售額:
3、時間類型
PANDAS中時間序列相關的水非常深,這裡只對日常中最基礎的時間格式進行講解,對時間序列感興趣的同學可以自行查閱相關資料,深入了解。
以案例數據為例,我們這些渠道數據,是在2019年8月2日提取的,後面可能涉及到其他日期的渠道數據,所以需要加一列時間予以區分,在EXCEL中常用的時間格式是』2019-8-3』或者』2019/8/3』,我們用PANDAS來實現一下:
在實際業務中,一些時候PANDAS會把文件中日期格式的欄位讀取為字元串格式,這裡我們先把字元串』2019-8-3』賦值給新增的日期列,然後用to_datetime()函數將字元串類型轉換成時間格式:
轉換成時間格式(這裡是datetime64)之後,我們可以用處理時間的思路高效處理這些數據,比如,我現在想知道提取數據這一天離年末還有多少天(『2019-12-31』),直接做減法(該函數接受時間格式的字元串序列,也接受單個字元串):
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/198544.html