fftc語言源代碼,fft的c語言代碼

本文目錄一覽:

用c語言實現FFT

float ar[1024],ai[1024];/* 原始數據實部,虛部 */

float a[2050];

void fft(int nn) /* nn數據長度 */

{

int n1,n2,i,j,k,l,m,s,l1;

float t1,t2,x,y;

float w1,w2,u1,u2,z;

float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};

float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};

switch(nn)

{

case 1024: s=10; break;

case 512: s=9; break;

case 256: s=8; break;

}

n1=nn/2; n2=nn-1;

j=1;

for(i=1;i=nn;i++)

{

a[2*i]=ar[i-1];

a[2*i+1]=ai[i-1];

}

for(l=1;ln2;l++)

{

if(lj)

{

t1=a[2*j];

t2=a[2*j+1];

a[2*j]=a[2*l];

a[2*j+1]=a[2*l+1];

a[2*l]=t1;

a[2*l+1]=t2;

}

k=n1;

while (kj)

{

j=j-k;

k=k/2;

}

j=j+k;

}

for(i=1;i=s;i++)

{

u1=1;

u2=0;

m=(1i);

k=m1;

w1=fcos[i-1];

w2=-fsin[i-1];

for(j=1;j=k;j++)

{

for(l=j;lnn;l=l+m)

{

l1=l+k;

t1=a[2*l1]*u1-a[2*l1+1]*u2;

t2=a[2*l1]*u2+a[2*l1+1]*u1;

a[2*l1]=a[2*l]-t1;

a[2*l1+1]=a[2*l+1]-t2;

a[2*l]=a[2*l]+t1;

a[2*l+1]=a[2*l+1]+t2;

}

z=u1*w1-u2*w2;

u2=u1*w2+u2*w1;

u1=z;

}

}

for(i=1;i=nn/2;i++)

{

ar[i]=4*a[2*i+2]/nn; /* 實部 */

ai[i]=-4*a[2*i+3]/nn; /* 虛部 */

a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]); /* 幅值 */

}

}

(;si=2)

打字不易,如滿意,望採納。

matlab fft2的c代碼

傅立葉變換的c語言源代碼

128點DIT FFT函數:

/* 採樣來的數據放在dataR[ ]數組中,運算前dataI[ ]數組初始化為0 */

void FFT(float dataR[],float dataI[])

{int x0,x1,x2,x3,x4,x5,x6;

int L,j,k,b,p;

float TR,TI,temp;

/********** following code invert sequence ************/

for(i=0;i128;i++)

{ x0=x1=x2=x3=x4=x5=x6=0;

x0=i0x01; x1=(i/2)0x01; x2=(i/4)0x01; x3=(i/8)0x01;x4=(i/16)0x01; x5=(i/32)0x01; x6=(i/64)0x01;

xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;

dataI[xx]=dataR[i];

}

for(i=0;i128;i++)

{ dataR[i]=dataI[i]; dataI[i]=0; }

/************** following code FFT *******************/

for(L=1;L=7;L++) { /* for(1) */

b=1; i=L-1;

while(i0)

{b=b*2; i–;} /* b= 2^(L-1) */

for(j=0;j=b-1;j++) /* for (2) */

{ p=1; i=7-L;

while(i0) /* p=pow(2,7-L)*j; */

{p=p*2; i–;}

p=p*j;

for(k=j;k128;k=k+2*b) /* for (3) */

{ TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];

dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];

dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];

dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];

dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];

} /* END for (3) */

} /* END for (2) */

} /* END for (1) */

for(i=0;i32;i++){ /* 只需要32次以下的諧波進行分析 */

w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);

w[i]=w[i]/64;}

w[0]=w[0]/2;

} /* END FFT */

基於FFT的演算法優化 要C語言完整程序(利用旋轉因子的性質),有的請留言,答謝!!!(有核心代碼,望指教

實現(C描述)

#include stdio.h

#include math.h

#include stdlib.h

//#include “complex.h”

// ————————————————————————–

#define N 8 //64

#define M 3 //6 //2^m=N

#define PI 3.1415926

// ————————————————————————–

float twiddle[N/2] = {1.0, 0.707, 0.0, -0.707};

float x_r[N] = {1, 1, 1, 1, 0, 0, 0, 0};

float x_i[N]; //N=8

/*

float twiddle[N/2] = {1, 0.9951, 0.9808, 0.9570, 0.9239, 0.8820, 0.8317, 0.7733,

0.7075, 0.6349, 0.5561, 0.4721, 0.3835, 0.2912, 0.1961, 0.0991,

0.0000,-0.0991,-0.1961,-0.2912,-0.3835,-0.4721,-0.5561,-0.6349,

-0.7075,-0.7733, 0.8317,-0.8820,-0.9239,-0.9570,-0.9808,-0.9951}; //N=64

float x_r[N]={1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,};

float x_i[N];

*/

FILE *fp;

// ———————————– func ———————————–

/**

* 初始化輸出虛部

*/

static void fft_init( void )

{

int i;

for(i=0; iN; i++) x_i[i] = 0.0;

}

/**

* 反轉演算法.將時域信號重新排序.

* 這個演算法有改進的空間

*/

static void bitrev( void )

{

int p=1, q, i;

int bit_rev[ N ]; //

float xx_r[ N ]; //

bit_rev[ 0 ] = 0;

while( p N )

{

for(q=0; qp; q++)

{

bit_rev[ q ] = bit_rev[ q ] * 2;

bit_rev[ q + p ] = bit_rev[ q ] + 1;

}

p *= 2;

}

for(i=0; iN; i++) xx_r[ i ] = x_r[ i ];

for(i=0; iN; i++) x_r[i] = xx_r[ bit_rev[i] ];

}

/* ———— add by sshc625 ———— */

static void bitrev2( void )

{

return ;

}

/* */

void display( void )

{

printf(“\n\n”);

int i;

for(i=0; iN; i++)

printf(“%f\t%f\n”, x_r[i], x_i[i]);

}

/**

*

*/

void fft1( void )

{ fp = fopen(“log1.txt”, “a+”);

int L, i, b, j, p, k, tx1, tx2;

float TR, TI, temp; // 臨時變數

float tw1, tw2;

/* 深M. 對層進行循環. L為當前層, 總層數為M. */

for(L=1; L=M; L++)

{

fprintf(fp,”———-Layer=%d———-\n”, L);

/* b的意義非常重大,b表示當前層的顆粒具有的輸入樣本點數 */

b = 1;

i = L – 1;

while(i 0)

{

b *= 2;

i–;

}

// ————– 是否外層對顆粒循環, 內層對樣本點循環邏輯性更強一些呢! ————–

/*

* outter對參與DFT的樣本點進行循環

* L=1, 循環了1次(4個顆粒, 每個顆粒2個樣本點)

* L=2, 循環了2次(2個顆粒, 每個顆粒4個樣本點)

* L=3, 循環了4次(1個顆粒, 每個顆粒8個樣本點)

*/

for(j=0; jb; j++)

{

/* 求旋轉因子tw1 */

p = 1;

i = M – L; // M是為總層數, L為當前層.

while(i 0)

{

p = p*2;

i–;

}

p = p * j;

tx1 = p % N;

tx2 = tx1 + 3*N/4;

tx2 = tx2 % N;

// tw1是cos部分, 實部; tw2是sin部分, 虛數部分.

tw1 = ( tx1=N/2)? -twiddle[tx1-N/2] : twiddle[ tx1 ];

tw2 = ( tx2=N/2)? -twiddle[tx2-(N/2)] : twiddle[tx2];

/*

* inner對顆粒進行循環

* L=1, 循環了4次(4個顆粒, 每個顆粒2個輸入)

* L=2, 循環了2次(2個顆粒, 每個顆粒4個輸入)

* L=3, 循環了1次(1個顆粒, 每個顆粒8個輸入)

*/

for(k=j; kN; k=k+2*b)

{

TR = x_r[k]; // TR就是A, x_r[k+b]就是B.

TI = x_i[k];

temp = x_r[k+b];

/*

* 如果複習一下 (a+j*b)(c+j*d)兩個複數相乘後的實部虛部分別是什麼

* 就能理解為什麼會如下運算了, 只有在L=1時候輸入才是實數, 之後層的

* 輸入都是複數, 為了讓所有的層的輸入都是複數, 我們只好讓L=1時候的

* 輸入虛部為0

* x_i[k+b]*tw2是兩個虛數相乘

*/

fprintf(fp, “tw1=%f, tw2=%f\n”, tw1, tw2);

x_r[k] = TR + x_r[k+b]*tw1 + x_i[k+b]*tw2;

x_i[k] = TI – x_r[k+b]*tw2 + x_i[k+b]*tw1;

x_r[k+b] = TR – x_r[k+b]*tw1 – x_i[k+b]*tw2;

x_i[k+b] = TI + temp*tw2 – x_i[k+b]*tw1;

fprintf(fp, “k=%d, x_r[k]=%f, x_i[k]=%f\n”, k, x_r[k], x_i[k]);

fprintf(fp, “k=%d, x_r[k]=%f, x_i[k]=%f\n”, k+b, x_r[k+b], x_i[k+b]);

} //

} //

} //

}

/**

* ———— add by sshc625 ————

* 該實現的流程為

* for( Layer )

* for( Granule )

* for( Sample )

*

*

*

*

*/

void fft2( void )

{ fp = fopen(“log2.txt”, “a+”);

int cur_layer, gr_num, i, k, p;

float tmp_real, tmp_imag, temp; // 臨時變數, 記錄實部

float tw1, tw2;// 旋轉因子,tw1為旋轉因子的實部cos部分, tw2為旋轉因子的虛部sin部分.

int step; // 步進

int sample_num; // 顆粒的樣本總數(各層不同, 因為各層顆粒的輸入不同)

/* 對層循環 */

for(cur_layer=1; cur_layer=M; cur_layer++)

{

/* 求當前層擁有多少個顆粒(gr_num) */

gr_num = 1;

i = M – cur_layer;

while(i 0)

{

i–;

gr_num *= 2;

}

/* 每個顆粒的輸入樣本數N’ */

sample_num = (int)pow(2, cur_layer);

/* 步進. 步進是N’/2 */

step = sample_num/2;

/* */

k = 0;

/* 對顆粒進行循環 */

for(i=0; igr_num; i++)

{

/*

* 對樣本點進行循環, 注意上限和步進

*/

for(p=0; psample_num/2; p++)

{

// 旋轉因子, 需要優化…

tw1 = cos(2*PI*p/pow(2, cur_layer));

tw2 = -sin(2*PI*p/pow(2, cur_layer));

tmp_real = x_r[k+p];

tmp_imag = x_i[k+p];

temp = x_r[k+p+step];

/*(tw1+jtw2)(x_r[k]+jx_i[k])

*

* real : tw1*x_r[k] – tw2*x_i[k]

* imag : tw1*x_i[k] + tw2*x_r[k]

* 我想不抽象出一個

* typedef struct {

* double real; // 實部

* double imag; // 虛部

* } complex; 以及針對complex的操作

* 來簡化複數運算是否是因為效率上的考慮!

*/

/* 蝶形演算法 */

x_r[k+p] = tmp_real + ( tw1*x_r[k+p+step] – tw2*x_i[k+p+step] );

x_i[k+p] = tmp_imag + ( tw2*x_r[k+p+step] + tw1*x_i[k+p+step] );

/* X[k] = A(k)+WB(k)

* X[k+N/2] = A(k)-WB(k) 的性質可以優化這裡*/

// 旋轉因子, 需要優化…

tw1 = cos(2*PI*(p+step)/pow(2, cur_layer));

tw2 = -sin(2*PI*(p+step)/pow(2, cur_layer));

x_r[k+p+step] = tmp_real + ( tw1*temp – tw2*x_i[k+p+step] );

x_i[k+p+step] = tmp_imag + ( tw2*temp + tw1*x_i[k+p+step] );

printf(“k=%d, x_r[k]=%f, x_i[k]=%f\n”, k+p, x_r[k+p], x_i[k+p]);

printf(“k=%d, x_r[k]=%f, x_i[k]=%f\n”, k+p+step, x_r[k+p+step], x_i[k+p+step]);

}

/* 開跳!:) */

k += 2*step;

}

}

}

/*

* 後記:

* 究竟是顆粒在外層循環還是樣本輸入在外層, 好象也差不多, 複雜度完全一樣.

* 但以我資質愚鈍花費了不少時間才弄明白這數十行代碼.

* 從中我發現一個於我非常有幫助的教訓, 很久以前我寫過一部分演算法, 其中絕大多數都是遞歸.

* 將數據量減少, 減少再減少, 用歸納的方式來找出數據量加大代碼的規律

* 比如FFT

* 1. 先寫死LayerI的代碼; 然後再把LayerI的輸出作為LayerII的輸入, 又寫死代碼; ……

* 大約3層就可以統計出規律來. 這和遞歸也是一樣, 先寫死一兩層, 自然就出來了!

* 2. 有的功能可以寫偽代碼, 不急於求出結果, 降低複雜性, 把邏輯結果定出來後再添加.

* 比如旋轉因子就可以寫死, 就寫1.0. 流程出來後再寫旋轉因子.

* 寥寥數語, 我可真是流了不少汗! Happy!

*/

void dft( void )

{

int i, n, k, tx1, tx2;

float tw1,tw2;

float xx_r[N],xx_i[N];

/*

* clear any data in Real and Imaginary result arrays prior to DFT

*/

for(k=0; k=N-1; k++)

xx_r[k] = xx_i[k] = x_i[k] = 0.0;

// caculate the DFT

for(k=0; k=(N-1); k++)

{

for(n=0; n=(N-1); n++)

{

tx1 = (n*k);

tx2 = tx1+(3*N)/4;

tx1 = tx1%(N);

tx2 = tx2%(N);

if(tx1 = (N/2))

tw1 = -twiddle[tx1-(N/2)];

else

tw1 = twiddle[tx1];

if(tx2 = (N/2))

tw2 = -twiddle[tx2-(N/2)];

else

tw2 = twiddle[tx2];

xx_r[k] = xx_r[k]+x_r[n]*tw1;

xx_i[k] = xx_i[k]+x_r[n]*tw2;

}

xx_i[k] = -xx_i[k];

}

// display

for(i=0; iN; i++)

printf(“%f\t%f\n”, xx_r[i], xx_i[i]);

}

// —————————————————————————

int main( void )

{

fft_init( );

bitrev( );

// bitrev2( );

//fft1( );

fft2( );

display( );

system( “pause” );

// dft();

return 1;

}

本文來自CSDN博客,轉載請標明出處:

怎樣用C語言實現FFT演算法啊?

1、二維FFT相當於對行和列分別進行一維FFT運算。具體的實現辦法如下:

先對各行逐一進行一維FFT,然後再對變換後的新矩陣的各列逐一進行一維FFT。相應的偽代碼如下所示:

for (int i=0; iM; i++)

FFT_1D(ROW[i],N);

for (int j=0; jN; j++)

FFT_1D(COL[j],M);

其中,ROW[i]表示矩陣的第i行。注意這只是一個簡單的記法,並不能完全照抄。還需要通過一些語句來生成各行的數據。同理,COL[i]是對矩陣的第i列的一種簡單表示方法。

所以,關鍵是一維FFT演算法的實現。

2、常式:

#include stdio.h

#include math.h

#include stdlib.h

#define N 1000

/*定義複數類型*/

typedef struct{

double real;

double img;

}complex;

complex x[N], *W; /*輸入序列,變換核*/

int size_x=0;      /*輸入序列的大小,在本程序中僅限2的次冪*/

double PI;         /*圓周率*/

void fft();     /*快速傅里葉變換*/

void initW();   /*初始化變換核*/

void change(); /*變址*/

void add(complex ,complex ,complex *); /*複數加法*/

void mul(complex ,complex ,complex *); /*複數乘法*/

void sub(complex ,complex ,complex *); /*複數減法*/

void output();

int main(){

int i;                             /*輸出結果*/

system(“cls”);

PI=atan(1)*4;

printf(“Please input the size of x:\n”);

scanf(“%d”,size_x);

printf(“Please input the data in x[N]:\n”);

for(i=0;isize_x;i++)

   scanf(“%lf%lf”,x[i].real,x[i].img);

initW();

fft();

output();

return 0;

}

/*快速傅里葉變換*/

void fft(){

int i=0,j=0,k=0,l=0;

complex up,down,product;

change();

for(i=0;i log(size_x)/log(2) ;i++){   /*一級蝶形運算*/

   l=1i;

   for(j=0;jsize_x;j+= 2*l ){             /*一組蝶形運算*/

    for(k=0;kl;k++){        /*一個蝶形運算*/

      mul(x[j+k+l],W[size_x*k/2/l],product);

      add(x[j+k],product,up);

      sub(x[j+k],product,down);

      x[j+k]=up;

      x[j+k+l]=down;

    }

   }

}

}

/*初始化變換核*/

void initW(){

int i;

W=(complex *)malloc(sizeof(complex) * size_x);

for(i=0;isize_x;i++){

   W[i].real=cos(2*PI/size_x*i);

   W[i].img=-1*sin(2*PI/size_x*i);

}

}

/*變址計算,將x(n)碼位倒置*/

void change(){

complex temp;

unsigned short i=0,j=0,k=0;

double t;

for(i=0;isize_x;i++){

   k=i;j=0;

   t=(log(size_x)/log(2));

   while( (t–)0 ){

    j=j1;

    j|=(k  1);

    k=k1;

   }

   if(ji){

    temp=x[i];

    x[i]=x[j];

    x[j]=temp;

   }

}

}

/*輸出傅里葉變換的結果*/

void output(){

int i;

printf(“The result are as follows\n”);

for(i=0;isize_x;i++){

   printf(“%.4f”,x[i].real);

   if(x[i].img=0.0001)printf(“+%.4fj\n”,x[i].img);

   else if(fabs(x[i].img)0.0001)printf(“\n”);

   else printf(“%.4fj\n”,x[i].img);

}

}

void add(complex a,complex b,complex *c){

c-real=a.real+b.real;

c-img=a.img+b.img;

}

void mul(complex a,complex b,complex *c){

c-real=a.real*b.real – a.img*b.img;

c-img=a.real*b.img + a.img*b.real;

}

void sub(complex a,complex b,complex *c){

c-real=a.real-b.real;

c-img=a.img-b.img;

}

求FFT的C語言程序……最好是1024點的……希望大家幫幫我!

float ar[1024],ai[1024];/* 實部,虛部 */

float a[2050]; /* 實際值 */

void fft()

{

int n1,n2,i,j,k,l,m,s=10,nn=1024,l1;

float t1,t2,x,y;

float w1,w2,u1,u2,z;

float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};

float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};

n1=nn/2; n2=nn-1;

j=1;

for(i=1;i=nn;i++)

{

a[2*i]=ar[i-1];

a[2*i+1]=ai[i-1];

}

for(l=1;ln2;l++)

{

if(lj)

{

t1=a[2*j];

t2=a[2*j+1];

a[2*j]=a[2*l];

a[2*j+1]=a[2*l+1];

a[2*l]=t1;

a[2*l+1]=t2;

}

k=n1;

while (kj)

{

j=j-k;

k=k/2;

}

j=j+k;

}

for(i=1;i=s;i++)

{

u1=1;

u2=0;

m=(1i);

k=m1;

w1=fcos[i-1];

w2=-fsin[i-1];

for(j=1;j=k;j++)

{

for(l=j;lnn;l=l+m)

{

l1=l+k;

t1=a[2*l1]*u1-a[2*l1+1]*u2;

t2=a[2*l1]*u2+a[2*l1+1]*u1;

a[2*l1]=a[2*l]-t1;

a[2*l1+1]=a[2*l+1]-t2;

a[2*l]=a[2*l]+t1;

a[2*l+1]=a[2*l+1]+t2;

}

z=u1*w1-u2*w2;

u2=u1*w2+u2*w1;

u1=z;

}

}

for(i=1;i=nn/2;i++)

{

ar[i]=a[2*i+2]/nn;

ai[i]=-a[2*i+3]/nn;

a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]);

}

}

C語言 1024點快速傅里葉變換(FFT)程序,最好經過優化,執行速度快

void fft()

{

int nn,n1,n2,i,j,k,l,m,s,l1;

float ar[1024],ai[1024]; // 實部 虛部

float a[2050];

float t1,t2,x,y;

float w1,w2,u1,u2,z;

float fsin[10]={0.000000,1.000000,0.707107,0.3826834,0.1950903,0.09801713,0.04906767,0.02454123,0.01227154,0.00613588,};// 優化

float fcos[10]={-1.000000,0.000000,0.7071068,0.9238796,0.9807853,0.99518472,0.99879545,0.9996988,0.9999247,0.9999812,};

nn=1024;

s=10;

n1=nn/2; n2=nn-1;

j=1;

for(i=1;i=nn;i++)

{

a[2*i]=ar[i-1];

a[2*i+1]=ai[i-1];

}

for(l=1;ln2;l++)

{

if(lj)

{

t1=a[2*j];

t2=a[2*j+1];

a[2*j]=a[2*l];

a[2*j+1]=a[2*l+1];

a[2*l]=t1;

a[2*l+1]=t2;

}

k=n1;

while (kj)

{

j=j-k;

k=k/2;

}

j=j+k;

}

for(i=1;i=s;i++)

{

u1=1;

u2=0;

m=(1i);

k=m1;

w1=fcos[i-1];

w2=-fsin[i-1];

for(j=1;j=k;j++)

{

for(l=j;lnn;l=l+m)

{

l1=l+k;

t1=a[2*l1]*u1-a[2*l1+1]*u2;

t2=a[2*l1]*u2+a[2*l1+1]*u1;

a[2*l1]=a[2*l]-t1;

a[2*l1+1]=a[2*l+1]-t2;

a[2*l]=a[2*l]+t1;

a[2*l+1]=a[2*l+1]+t2;

}

z=u1*w1-u2*w2;

u2=u1*w2+u2*w1;

u1=z;

}

}

for(i=1;i=nn/2;i++)

{

ar[i]=a[2*i+2]/nn;

ai[i]=-a[2*i+3]/nn;

a[i]=4*sqrt(ar[i]*ar[i]+ai[i]*ai[i]); // 幅值

}

}

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/194450.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-02 14:39
下一篇 2024-12-02 14:39

相關推薦

  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python字元串寬度不限制怎麼打代碼

    本文將為大家詳細介紹Python字元串寬度不限制時如何打代碼的幾個方面。 一、保持代碼風格的統一 在Python字元串寬度不限制的情況下,我們可以寫出很長很長的一行代碼。但是,為了…

    編程 2025-04-29
  • Python基礎代碼用法介紹

    本文將從多個方面對Python基礎代碼進行解析和詳細闡述,力求讓讀者深刻理解Python基礎代碼。通過本文的學習,相信大家對Python的學習和應用會更加輕鬆和高效。 一、變數和數…

    編程 2025-04-29
  • g3log源代碼學習

    g3log是一個高性能C++日誌庫,其代碼十分精簡和可讀性強,本文將從3個方面詳細介紹g3log源代碼學習。 一、g3log源代碼整體架構 g3log的整體架構十分清晰,其中有3個…

    編程 2025-04-29
  • AES加密解密演算法的C語言實現

    AES(Advanced Encryption Standard)是一種對稱加密演算法,可用於對數據進行加密和解密。在本篇文章中,我們將介紹C語言中如何實現AES演算法,並對實現過程進…

    編程 2025-04-29
  • 學習Python對學習C語言有幫助嗎?

    Python和C語言是兩種非常受歡迎的編程語言,在程序開發中都扮演著非常重要的角色。那麼,學習Python對學習C語言有幫助嗎?答案是肯定的。在本文中,我們將從多個角度探討Pyth…

    編程 2025-04-29
  • Python滿天星代碼:讓編程變得更加簡單

    本文將從多個方面詳細闡述Python滿天星代碼,為大家介紹它的優點以及如何在編程中使用。無論是剛剛接觸編程還是資深程序員,都能從中獲得一定的收穫。 一、簡介 Python滿天星代碼…

    編程 2025-04-29
  • 倉庫管理系統代碼設計Python

    這篇文章將詳細探討如何設計一個基於Python的倉庫管理系統。 一、基本需求 在著手設計之前,我們首先需要確定倉庫管理系統的基本需求。 我們可以將需求分為以下幾個方面: 1、庫存管…

    編程 2025-04-29
  • 寫代碼新手教程

    本文將從語言選擇、學習方法、編碼規範以及常見問題解答等多個方面,為編程新手提供實用、簡明的教程。 一、語言選擇 作為編程新手,選擇一門編程語言是很關鍵的一步。以下是幾個有代表性的編…

    編程 2025-04-29
  • Python實現簡易心形代碼

    在這個文章中,我們將會介紹如何用Python語言編寫一個非常簡單的代碼來生成一個心形圖案。我們將會從安裝Python開始介紹,逐步深入了解如何實現這一任務。 一、安裝Python …

    編程 2025-04-29

發表回復

登錄後才能評論