mysql資料庫耗時上升,mysql為什麼數據量增大後性能會下降

本文目錄一覽:

超詳細MySQL資料庫優化

資料庫優化一方面是找出系統的瓶頸,提高MySQL資料庫的整體性能,而另一方面需要合理的結構設計和參數調整,以提高用戶的相應速度,同時還要儘可能的節約系統資源,以便讓系統提供更大的負荷.

1. 優化一覽圖

2. 優化

筆者將優化分為了兩大類,軟優化和硬優化,軟優化一般是操作資料庫即可,而硬優化則是操作伺服器硬體及參數設置.

2.1 軟優化

2.1.1 查詢語句優化

1.首先我們可以用EXPLAIN或DESCRIBE(簡寫:DESC)命令分析一條查詢語句的執行信息.

2.例:

顯示:

其中會顯示索引和查詢數據讀取數據條數等信息.

2.1.2 優化子查詢

在MySQL中,盡量使用JOIN來代替子查詢.因為子查詢需要嵌套查詢,嵌套查詢時會建立一張臨時表,臨時表的建立和刪除都會有較大的系統開銷,而連接查詢不會創建臨時表,因此效率比嵌套子查詢高.

2.1.3 使用索引

索引是提高資料庫查詢速度最重要的方法之一,關於索引可以參高筆者MySQL資料庫索引一文,介紹比較詳細,此處記錄使用索引的三大注意事項:

2.1.4 分解表

對於欄位較多的表,如果某些欄位使用頻率較低,此時應當,將其分離出來從而形成新的表,

2.1.5 中間表

對於將大量連接查詢的表可以創建中間表,從而減少在查詢時造成的連接耗時.

2.1.6 增加冗餘欄位

類似於創建中間表,增加冗餘也是為了減少連接查詢.

2.1.7 分析表,,檢查表,優化表

分析表主要是分析表中關鍵字的分布,檢查表主要是檢查表中是否存在錯誤,優化表主要是消除刪除或更新造成的表空間浪費.

1. 分析表: 使用 ANALYZE 關鍵字,如ANALYZE TABLE user;

2. 檢查表: 使用 CHECK關鍵字,如CHECK TABLE user [option]

option 只對MyISAM有效,共五個參數值:

3. 優化表:使用OPTIMIZE關鍵字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;

LOCAL|NO_WRITE_TO_BINLOG都是表示不寫入日誌.,優化表只對VARCHAR,BLOB和TEXT有效,通過OPTIMIZE TABLE語句可以消除文件碎片,在執行過程中會加上只讀鎖.

2.2 硬優化

2.2.1 硬體三件套

1.配置多核心和頻率高的cpu,多核心可以執行多個線程.

2.配置大內存,提高內存,即可提高緩存區容量,因此能減少磁碟I/O時間,從而提高響應速度.

3.配置高速磁碟或合理分布磁碟:高速磁碟提高I/O,分布磁碟能提高並行操作的能力.

2.2.2 優化資料庫參數

優化資料庫參數可以提高資源利用率,從而提高MySQL伺服器性能.MySQL服務的配置參數都在my.cnf或my.ini,下面列出性能影響較大的幾個參數.

2.2.3 分庫分表

因為資料庫壓力過大,首先一個問題就是高峰期系統性能可能會降低,因為資料庫負載過高對性能會有影響。另外一個,壓力過大把你的資料庫給搞掛了怎麼辦?所以此時你必須得對系統做分庫分表 + 讀寫分離,也就是把一個庫拆分為多個庫,部署在多個資料庫服務上,這時作為主庫承載寫入請求。然後每個主庫都掛載至少一個從庫,由從庫來承載讀請求。

2.2.4 緩存集群

如果用戶量越來越大,此時你可以不停的加機器,比如說系統層面不停加機器,就可以承載更高的並發請求。然後資料庫層面如果寫入並發越來越高,就擴容加資料庫伺服器,通過分庫分表是可以支持擴容機器的,如果資料庫層面的讀並發越來越高,就擴容加更多的從庫。但是這裡有一個很大的問題:資料庫其實本身不是用來承載高並發請求的,所以通常來說,資料庫單機每秒承載的並發就在幾千的數量級,而且資料庫使用的機器都是比較高配置,比較昂貴的機器,成本很高。如果你就是簡單的不停的加機器,其實是不對的。所以在高並發架構里通常都有緩存這個環節,緩存系統的設計就是為了承載高並發而生。所以單機承載的並發量都在每秒幾萬,甚至每秒數十萬,對高並發的承載能力比資料庫系統要高出一到兩個數量級。所以你完全可以根據系統的業務特性,對那種寫少讀多的請求,引入緩存集群。具體來說,就是在寫資料庫的時候同時寫一份數據到緩存集群里,然後用緩存集群來承載大部分的讀請求。這樣的話,通過緩存集群,就可以用更少的機器資源承載更高的並發。

一個完整而複雜的高並發系統架構中,一定會包含:各種複雜的自研基礎架構系統。各種精妙的架構設計.因此一篇小文頂多具有拋磚引玉的效果,但是資料庫優化的思想差不多就這些了.

mysql資料庫突然變慢 資料庫變慢是什麼原因

MySQL 在崩潰恢復時,會遍歷打開所有 ibd 文件的 header page 驗證數據字典的準確性,如果 MySQL 中包含了大量表,這個校驗過程就會比較耗時。 MySQL 下崩潰恢復確實和表數量有關,表總數越大,崩潰恢復時間越長。另外磁碟 IOPS 也會影響崩潰恢復時間,像這裡開發庫的 HDD IOPS 較低,因此面對大量的表空間,校驗速度就非常緩慢。另外一個發現,MySQL 8 下正常啟用時居然也會進行表空間校驗,而故障恢復時則會額外再進行一次表空間校驗,等於校驗了 2 遍。不過 MySQL 8.0 里多了一個特性,即表數量超過 5W 時,會啟用多線程掃描,加快表空間校驗過程。

如何跳過校驗MySQL 5.7 下有方法可以跳過崩潰恢復時的表空間校驗過程嘛?查閱了資料,方法主要有兩種:

1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那麼 validate = false,即可以跳過表空間校驗。實際測試的時候設置 innodb_force_recovery =1,也就是強制恢復跳過壞頁,就可以跳過校驗,然後重啟就是正常啟動了。通過這種臨時方式可以避免崩潰恢復後非常耗時的表空間校驗過程,快速啟動 MySQL,個人目前暫時未發現有什麼隱患。2. 使用共享表空間替代獨立表空間這樣就不需要打開 N 個 ibd 文件了,只需要打開一個 ibdata 文件即可,大大節省了校驗時間。自從聽了姜老師講過使用共享表空間替代獨立表空間解決 drop 大表時性能抖動的原理後,感覺共享表空間在很多業務環境下,反而更有優勢。

臨時冒出另外一種解決想法,即用 GDB 調試崩潰恢復,通過臨時修改 validate 變數值讓 MySQL 跳過表空間驗證過程,然後讓 MySQL 正常關閉,重新啟動就可以正常啟動了。但是實際測試發現,如果以 debug 模式運行,確實可以臨時修改 validate 變數,跳過表空間驗證過程,但是 debug 模式下代碼運行效率大打折扣,反而耗時更長。而以非 debug 模式運行,則無法修改 validate 變數,想法破滅。

問了下mysql資料庫cpu飆升到500%的話他怎麼處理

運行平穩的資料庫,如果遇到CPU狂飆,到80%左右,那一定是開發寫的爛SQL導致的,DBA首先要保證的是,資料庫別跑掛了,所以我們要把那些運行慢的SQL殺死並記錄到文件里,以便後面的排查。

這裡用到一個工具pt-kill,它可以幫助你。

pt-kill –match-info “^(select|SELECT)” –busy-time 3 –victim all –interval 1 –kill –print –daemonize /root/kill.txt

解釋:只把select耗時3秒以上的SQL全部殺死,並列印出來。

mysql資料庫操作耗時很久是什麼原因

Mysql查詢語句慢,執行時間長和等待時間長的原因

沒有索引或沒用好索引(單值索引和複合索引)

關聯查詢太多join,

伺服器調優及各個參數設置(緩衝,線程數等)

在MySQL 中,哪些原因導致一條簡單的 SQL 插入耗時很長

Count: 6 Time=25.33s (152s) Lock=0.00s (0s) Rows=0.0 (0), xxx[xxx]@xxx

INSERT INTO tablename(f_uid,uid,create_time) VALUES (N,N,N)

分析原因如下:

1.不可能是鎖等待,因為記錄的Lock時間為0;

2.若是InnoDB引擎,則跟主鍵為啥存在一定關係,但是應該不是特別大,從你的SQL語句看;

3.資料庫主機的負載過高,導致處理不過,是最可能的原因;

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/193770.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-02 09:40
下一篇 2024-12-02 09:40

相關推薦

  • 如何修改mysql的埠號

    本文將介紹如何修改mysql的埠號,方便開發者根據實際需求配置對應埠號。 一、為什麼需要修改mysql埠號 默認情況下,mysql使用的埠號是3306。在某些情況下,我們需…

    編程 2025-04-29
  • Python讀取CSV數據畫散點圖

    本文將從以下方面詳細闡述Python讀取CSV文件並畫出散點圖的方法: 一、CSV文件介紹 CSV(Comma-Separated Values)即逗號分隔值,是一種存儲表格數據的…

    編程 2025-04-29
  • Python 常用資料庫有哪些?

    在Python編程中,資料庫是不可或缺的一部分。隨著互聯網應用的不斷擴大,處理海量數據已成為一種趨勢。Python有許多成熟的資料庫管理系統,接下來我們將從多個方面介紹Python…

    編程 2025-04-29
  • Python中讀入csv文件數據的方法用法介紹

    csv是一種常見的數據格式,通常用於存儲小型數據集。Python作為一種廣泛流行的編程語言,內置了許多操作csv文件的庫。本文將從多個方面詳細介紹Python讀入csv文件的方法。…

    編程 2025-04-29
  • 如何用Python統計列表中各數據的方差和標準差

    本文將從多個方面闡述如何使用Python統計列表中各數據的方差和標準差, 並給出詳細的代碼示例。 一、什麼是方差和標準差 方差是衡量數據變異程度的統計指標,它是每個數據值和該數據值…

    編程 2025-04-29
  • openeuler安裝資料庫方案

    本文將介紹在openeuler操作系統中安裝資料庫的方案,並提供代碼示例。 一、安裝MariaDB 下面介紹如何在openeuler中安裝MariaDB。 1、更新軟體源 sudo…

    編程 2025-04-29
  • Python多線程讀取數據

    本文將詳細介紹多線程讀取數據在Python中的實現方法以及相關知識點。 一、線程和多線程 線程是操作系統調度的最小單位。單線程程序只有一個線程,按照程序從上到下的順序逐行執行。而多…

    編程 2025-04-29
  • Python兩張表數據匹配

    本篇文章將詳細闡述如何使用Python將兩張表格中的數據匹配。以下是具體的解決方法。 一、數據匹配的概念 在生活和工作中,我們常常需要對多組數據進行比對和匹配。在數據量較小的情況下…

    編程 2025-04-29
  • Python爬取公交數據

    本文將從以下幾個方面詳細闡述python爬取公交數據的方法: 一、準備工作 1、安裝相關庫 import requests from bs4 import BeautifulSou…

    編程 2025-04-29
  • Python數據標準差標準化

    本文將為大家詳細講述Python中的數據標準差標準化,以及涉及到的相關知識。 一、什麼是數據標準差標準化 數據標準差標準化是數據處理中的一種方法,通過對數據進行標準差標準化可以將不…

    編程 2025-04-29

發表回復

登錄後才能評論