本文目錄一覽:
Python hmmlearn中的混淆矩陣是怎麼表示的
hmmlearn這個庫有三種模型,分別是Gaussian,Multinomial和GMMHMM。這三種模型對應的就是三種emission matrix(即混淆矩陣,也就是隱狀態到觀察態的概率)。Gaussian就是說混淆矩陣是一個高斯分布,即觀察態是連續的。Multinomiual就是說混淆矩陣事一個Multibimiual distribution,即觀察態勢離散的。GMMHMM則是說混淆矩陣是遵循gaussinan mixture 分布,也是連續的。
題主問如何把混淆矩陣輸入到模型裡面。首先你要確定你的混淆矩陣的類型。對於Gaussian類型,就是把你希望的 mean和variance值放到模型裡面。我就直接把文檔裡面的例子搬過來,例子里是建立了一個高斯分布的隱馬爾科夫模型。
import numpy as np
from hmmlearn import hmm
#一個隱馬爾科夫模型由(p向量,狀態轉移矩陣,混淆矩陣)來定義。
startprob = np.array([0.6, 0.3, 0.1])
# 定義初始狀態的概率
transmat = np.array([[0.7, 0.2, 0.1], [0.3, 0.5, 0.2], [0.3, 0.3, 0.4]])#定義轉移矩陣的概率
means = np.array([[0.0, 0.0], [3.0, -3.0], [5.0, 10.0]])
#定義混淆矩陣的均值
covars = np.tile(np.identity(2), (3, 1, 1))# 定義混淆矩陣的方差
model = hmm.GaussianHMM(3, “full”, startprob, transmat)# 定義一個混淆矩陣為高斯分布的隱馬爾科夫模型。 這裡『full』的意思就是說你輸入的方差矩陣每個元素都給出了,不是一個只是對角線上的元素為0的矩陣
model.means_ = means
model.covars_ = covars#把你希望的均值方差輸入你定義的模型裡面,到此你就把混淆矩陣輸入進模型了
X, Z = model.sample(100)
對於Multinomial 和 GMM,我還沒用,不過Multinomial應該是需要你自己手動輸入隱狀態到觀察態的概率的,而GMM應該是和Gaussian類型類似,只是需要多輸入一個權重因子。
對於第二個問題,covariance_type意思是你的混淆矩陣的covariance matrix是什麼類型,比如若只是對角線上的元素不為0,則把covariance_type設為『diag』。
python中怎樣處理漢語的同義詞用結巴分詞
python中文分詞:結巴分詞
中文分詞是中文文本處理的一個基礎性工作,結巴分詞利用進行中文分詞。其基本實現原理有三點:
基於Trie樹結構實現高效的詞圖掃描,生成句子中漢字所有可能成詞情況所構成的有向無環圖(DAG)
採用了動態規劃查找最大概率路徑, 找出基於詞頻的最大切分組合
對於未登錄詞,採用了基於漢字成詞能力的HMM模型,使用了Viterbi演算法
安裝(Linux環境)
下載工具包,解壓後進入目錄下,運行:python setup.py install
模式
默認模式,試圖將句子最精確地切開,適合文本分析
全模式,把句子中所有的可以成詞的詞語都掃描出來,適合搜索引擎
介面
組件只提供jieba.cut 方法用於分詞
cut方法接受兩個輸入參數:
第一個參數為需要分詞的字元串
cut_all參數用來控制分詞模式
待分詞的字元串可以是gbk字元串、utf-8字元串或者unicode
jieba.cut返回的結構是一個可迭代的generator,可以使用for循環來獲得分詞後得到的每一個詞語(unicode),也可以用list(jieba.cut(…))轉化為list
實例
#! -*- coding:utf-8 -*-
import jieba
seg_list = jieba.cut(“我來到北京清華大學”, cut_all = True)
print “Full Mode:”, ‘ ‘.join(seg_list)
seg_list = jieba.cut(“我來到北京清華大學”)
print “Default Mode:”, ‘ ‘.join(seg_list)
Python 畫好看的雲詞圖
詞雲圖是數據分析中比較常見的一種可視化手段。詞雲圖,也叫文字雲,是對文本中出現頻率較高的 關鍵詞 予以視覺化的展現,出現越多的詞,在詞雲圖中展示越顯眼。詞雲圖過濾掉大量低頻低質的文本信息,因此只要一眼掃過文本就可 領略文章主旨 。
例如?上面這張圖,看一眼就知道肯定是新華網的新聞。
那生成一張詞雲圖的主要步驟有哪些?這裡使用 Python 來實現,主要分三步:
首先是「結巴」中文分詞 jieba 的安裝。
對於英文文本,word_cloud 可以直接對文本源生成詞雲圖。但是對中文的支持沒有那麼給力,所以需要先使用 jieba 對中文文本進行分詞,把文章變成詞語,然後再生成詞雲圖。例如:
jieba.cut 分詞:方法接受三個輸入參數,sentence 需要分詞的字元串;cut_all 用來控制是否採用全模式;HMM 用來控制是否使用 HMM 模型。
jieba.cut_for_search 分詞:方法接受兩個參數,sentence 需要分詞的字元串;是否使用 HMM 模型。該方法適合用於搜索引擎構建倒排索引的分詞,粒度比較細。
jieba.analyse.textrank 使用 TextRank 演算法從句子中提取關鍵詞。
然後安裝 wordcloud 詞雲圖庫。
如果執行上面命令後,顯示 success,那麼恭喜你,安裝成功了。
我就遇到了 Failed building wheel for wordcloud 的錯誤。於是先安裝 xcode-select, 再安裝 wordcloud 即可(無需安裝 Xcode)。
wordcloud 庫把詞雲當作一個 WordCloud 對象,wordcloud.WordCloud() 代表一個文本對應的詞雲,可以根據文本中詞語出現的頻率等參數繪製詞雲,繪製詞雲的形狀、尺寸和顏色。
1、首先導入文本數據並進行簡單的文本處理
2、分詞
3、設置遮罩
注意:
1、默認字體不支持中文,如果需要顯示中文,需要設置中文字體,否則會亂碼。
2、設置遮罩時,會自動將圖片非白色部分填充,且圖片越清晰,運行速度越快
其中 WordCloud 是雲詞圖最重要的對象,其主要參數描述如下:
效果如下圖:
上小結是將文章中所有內容進行分詞,輸出了所有詞,但很多時候,我們有進一步的需求。例如:
1、只需要前 100 個關鍵詞就夠了。
2、不需要五顏六色的詞語,應與遮罩圖片顏色一致。
100個關鍵詞,我們在分詞時使用 TextRank 演算法從句子中提取關鍵詞。
遮罩顏色可通過設置 WordCloud 的 color_func 屬性。
最終效果如下:
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/192126.html