本文目錄一覽:
python入門教程
《【3】學習視頻》百度網盤資源免費下載
鏈接:
提取碼:m6tm
【3】學習視頻|python視頻教程|Python入門基礎視頻教程|lets python 視頻教程|Lets-python-017-文件和輸入輸出01.avi|Lets-python-016-條件和循環02-練習題和生成器.avi|Lets-python-015-條件和循環01.avi|Lets-python-014-映射和集合02.avi|Lets-python-013-映射和集合01.avi|Lets-python-012-序列04-02.avi|Lets-python-012-序列04-01.avi|Lets-python-011-del和getattr.avi|Lets-python-010-序列03.avi|lets-python-009-序列02.avi|Lets-python-008-序列01.avi
python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼)
Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。
Python數據分析與挖掘技術概述
所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標準差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與藥物之間的規律等。
預先善其事必先利其器
我們首先聊聊數據分析的模塊有哪些:
下面就說說這些模塊的基礎使用。
numpy模塊安裝與使用
安裝:
下載地址是:
我這裡下載的包是1.11.3版本,地址是:
下載好後,使用pip install “numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl”
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy
numpy簡單使用
生成隨機數
主要使用numpy下的random方法。
pandas
使用 pip install pandas 即可
直接上代碼:
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:
常用方法如下:
下面看看pandas對數據的統計,下面就說說每一行的信息
轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:
通過pandas導入數據
pandas支持多種輸入格式,我這裡就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。
CSV文件
csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列
excel表格
依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數
讀取SQL
依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。
讀取HTML
依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取
顯示的是時候是通過python的列表展示,同時添加了行與列的標識
讀取txt文件
輸出顯示的時候同時添加了行與列的標識
scipy
安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:
matplotlib 數據可視化分析
我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。
下面請看代碼:
下面說說修改圖的樣式
關於圖形類型,有下面幾種:
關於顏色,有下面幾種:
關於形狀,有下面幾種:
我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:
我們還可以畫虛線圖,代碼如下所示:
還可以給圖添加上標題,x,y軸的標籤,代碼如下所示
直方圖
利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。
Y軸為出現的次數,X軸為這個數的值(或者是範圍)
還可以指定直方圖類型通過histtype參數:
圖形區別語言無法描述很詳細,大家可以自信嘗試。
舉個例子:
子圖功能
什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:
我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。
先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。
我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這裡只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。
下面看看代碼:
Python該怎麼入門?
作為初學者,第一個月的月目標應該是這樣的:
熟悉基本概念(變數,條件,列表,循環,函數)
練習超過 30 個編程問題
利用這些概念完成兩個項目
熟悉至少 2 個框架
開始使用集成開發環境(IDE),Github,hosting,services 等
整體計劃
現在,我們先將月計劃細化成周計劃。
第一周:熟悉 Python
要積極探索 Python 的使用方法,儘可能多的完成下面這些任務:
第一天:基本概念(4 小時):print,變數,輸入,條件語句
第二天:基本概念(5 小時):列表,for 循環,while 循環,函數,導入模塊
第三天:簡單編程問題(5 小時):交換兩個變數值,將攝氏度轉換為華氏溫度,求數字中各位數之和,判斷某數是否為素數,生成隨機數,刪除列表中的重複項等等
第四天:中級編程問題(6 小時):反轉一個字元串(迴文檢測),計算最大公約數,合併兩個有序數組,猜數字遊戲,計算年齡等等
第五天:數據結構(6 小時):棧,隊列,字典,元組,樹,鏈表。
第六天:面向對象編程(OOP)(6 小時):對象,類,方法和構造函數,面向對象編程之繼承
第七天:演算法(6 小時):搜索(線性和二分查找)、排序(冒泡排序、選擇排序)、遞歸函數(階乘、斐波那契數列)、時間複雜度(線性、二次和常量)
通過第一周時間,python大致能熟悉了,自學能力稍微弱一點找人帶下你,節約自己的時間。
注意:別急著安裝 Python 環境!
這看起來很矛盾,但是你一定要相信我。我有幾個朋友,他們因為語言工具包和 IDE 安裝的失敗而逐漸失去了學習下去的慾望。因此,我的建議是先使用一些安卓 app 來探索這門語言,如果你是個技術小白,安裝 Python 環境可不是你的首要任務。
第二周:開始軟體開發(構建項目)
接下來,讓我們朝著軟體開發任務進軍吧!不妨嘗試綜合你學到的知識完成一個實際的項目:
第一天:熟悉一種 IDE(5 小時): IDE 是你在編寫大型項目時的操作環境,所以你需要精通一個 IDE。在軟體開發的初期,我建議你在 VS code 中安裝 Python 擴展或使用 Jupyter notebook。
第二天:Github(6 小時):探索 Github,並創建一個代碼倉庫。嘗試提交(Commit)、查看變更(Diff)和上推(Push)你的代碼。另外,還要學習如何利用分支工作,如何合併(merge)不同分支以及如何在一個項目中創建拉取請求(pull request)。
第三天:第一個項目——簡單計算器(4 小時):熟悉 Tkinter,創建一個簡單的計算器
第四、五、六天:個人項目(每天 5 小時):選定一個項目並完成它。如果你不知道你該做什麼,可以查看下面的清單( pythonprojects -for-an- middle – programmer/answer/jhankar – mahbub2)
第七天:託管項目(5 小時):學習使用伺服器和 hosting 服務來託管你的項目。創建一個 Heroku 設置並部署你構建的應用程序。
為什麼要寫項目?
如果僅僅按部就班地學習課堂上或視頻中的內容,你無法擁有獨立思考能力。所以,你必須把你的知識應用到一個項目中。當你努力尋找答案時,你也在慢慢地學會這些知識。
第三周:讓自己成為一名程序員
第 3 周的目標是熟悉軟體開發的整體過程。你不需要掌握所有的知識,但是你應該知道一些常識,因為它們會影響你的日常工作。
第一天:資料庫基礎(6 小時):基本 SQL 查詢(創建表、選擇、Where 查詢、更新)、SQL 函數(Avg、Max、Count)、關係資料庫(規範化)、內連接、外連接等
第二天:使用 Python 資料庫(5 小時):利用一種資料庫框架(SQLite 或 panda),連接到一個資料庫,在多個表中創建並插入數據,再從表中讀取數據。
第三天:API(5 小時):如何調用 API。學習 JSON、微服務(micro-service)以及表現層應用程序轉換應用程序介面(Rest API)。
第四天:Numpy(4 小時):熟悉 Numpy(- Numpy -for- datascies-beginners-b8088722309f)並練習前 30 個 Numpy 習題(- 100/blob/master/100_numpy_excercises.md)
第五、六天:作品集網站(一天 5 小時):學習 Django,使用 Django 構建一個作品集網站(- start-with-django -1/),也要了解一下 Flask 框架。
第七天:單元測試、日誌、調試(5 小時):學習單元測試(PyTest),如何設置和查看日誌,以及使用斷點調試。
真心話時間(絕密)
如果你非常「瘋狂」,並且非常專註,你可以在一個月內完成這些任務。你必須做到:
把學習 Python 作為你的全職活動。你需要從早上 8 點開始學習,一直到下午 5 點。在此期間,你可以有一個午休時間和茶歇時間(共 1 小時)。
8 點列出你今天要學的東西,然後花一個小時複習和練習你昨天學過的東西。
從 9 點到 12 點:開始學習,並進行少量練習。在午飯後,你需要加大練習量,如果你卡在某個問題上,可以在網上搜索解決方案。
嚴格保持每天 4-5 小時的學習時間和 2-3 小時的練習時間(每周最多可以休息一天)。
你的朋友可能會認為你瘋了。走自己的路,讓別人去說吧!
如果你有一份全職工作,或者你是一名學生,完成這些流程可能需要更長的時間。作為一名全日制學生,我花了 8 個月的時間來完成這份清單。現在我是一名高級開發人員。所以,不管花多長時間,一定要完成它們。要想成功完成一個目標,必須付出百分之百的努力。
第四周:認真考慮工作(實習)問題
第 4 周的目標是認真思考如何才能被錄用。即使你現在不想找工作,你也可以在探索這條道路的過程中學到很多東西。
第一天:準備簡歷(5 小時):製作一份一頁的簡歷。把你的技能總結放在最上面,必須在寫項目的同時附上 Github 鏈接。
第二天:作品集網站(6 小時):寫幾個博客,將它們添加到你之前開發的作品集網站中。
第三天:LinkedIn 簡介(4 小時):創建一個 LinkedIn 個人簡介,把簡歷上的所有內容都放到 LinkedIn 上。
第四天:面試準備(7 小時):準備一些谷歌常見的面試問題,練習白皮書中的 10 個面試編程問題。在 Glassdoor、Careercup 等網站中查看前人遇到的面試問題。
第五天:社交(~小時):走出房門,開始參加聚會、招聘會,與其他開發人員和招聘人員見面。
第六天:工作申請(~小時):搜索「Python Job」,查看 LinkedIn Job 和本地求職網站。選擇 3 個工作崗位並發送工作申請。為每個工作定製你的簡歷。在每個工作要求中找出 2 到 3 件你不知道的事情,並在接下來的 3-4 天里學會它們。
第七天:在拒絕中學習(~小時):每次你被拒絕的時候,找出兩件為了獲得這份工作你應該知道的事情,然後花 4-5 天 的時間來掌握它們。這樣,每次拒絕都會讓你成為更好的開發人員。
python入門教程?
給大家整理的這套python學習路線圖,按照此教程一步步的學習來,肯定會對python有更深刻的認識。或許可以喜歡上python這個易學,精簡,開源的語言。此套教程,不但有視頻教程,還有源碼分享,讓大家能真正打開python的大門,進入這個領域。現在互聯網巨頭,都已經轉投到人工智慧領域,而人工智慧最好的編程語言就是python,未來前景顯而易見。黑馬程序員是國內最早開設人工智慧的機構。
一、首先先推薦一個教程
8天深入理解python教程:
主要講解,python開發環境的構建,基礎的數據類型,字元串如何處理等簡單的入門級教程。
二、第二個教程,是系統的基礎知識,學習周期大概一個月左右的時間,根據自己的學習能力吸收能力來定。 初學者只要跟著此套教程學習,入門完全沒有問題。
學完後可掌握的核心能力
1、掌握基本的Linux系統操作;
2、掌握Python基礎編程語法;
3、建立起編程思維和面向對象思想;
可解決的現實問題:
字元串排序,切割,逆置;猜數字、飛機大戰遊戲;
市場價值:
具備編程思維,掌握Python基本語法,能開發出一些小遊戲
所涉及知識點:
教程地址:
三、拓展教程
1、網路爬蟲-利用python實現爬取網頁神技
第一天:
第二天:
2、Python之web開發利刃
第一天:
第二天:
3、python之大數據開發奇兵
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/190888.html