一、介紹
realsense d435i是一款深度相機,由英特爾公司開發。它通過採用一組紅外發射器和攝像頭,來實現深度圖像的捕獲。它不僅可以捕獲彩色圖像,還可以捕獲深度圖像和紅外圖像,可以應用於機器人、工業自動化、虛擬現實等多個領域。
二、硬體描述
realsense d435i由多個模塊組成,包括RGB相機、紅外發射器、紅外接收器、深度感測器和IMU感測器。RGB相機用於捕獲彩色圖像,紅外發射器和紅外接收器用於計算深度數據,深度感測器用於捕獲深度圖像,而IMU感測器用於捕獲運動信息。
三、realsense SDK簡介
realsense SDK是一款開源軟體開發工具包,是由英特爾公司開發的。它可以方便地與realsense d435i相機進行交互,並進行深度信息的採集和處理。它支持多個編程語言,如C++、C#、Python等。
以下是一個使用C++語言編寫的簡單程序,用於捕獲realsense d435i相機的深度數據:
#include #include int main() { rs2::pipeline pipe; rs2::config cfg; cfg.enable_stream(RS2_STREAM_DEPTH); pipe.start(cfg); while (true) { rs2::frameset frames = pipe.wait_for_frames(); rs2::depth_frame depth = frames.get_depth_frame(); std::cout << "Depth at (320, 240): " << depth.get_distance(320, 240) << std::endl; } return 0; }
四、realsense與ROS結合
ROS(Robot Operating System)是一個用於機器人應用程序開發的開源框架,是由加州大學聖地亞哥分校開發的。ROS可以與realsense d435i相機結合起來,用於機器人的導航、建圖和路徑規劃等多個應用領域。
以下是一個使用ROS和realsense d435i相機實現體積估計的案例:
#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class VolumeEstimation { public: VolumeEstimation(ros::NodeHandle& nh, ros::NodeHandle& pnh) { cloud_.reset(new pcl::PointCloud); cloud_filtered_.reset(new pcl::PointCloud); cloud_smoothed_.reset(new pcl::PointCloud); cloud_rotated_.reset(new pcl::PointCloud); cloud_transformed_.reset(new pcl::PointCloud); registered_.reset(new pcl::PointCloud); ndt_.reset(new pcl::NormalDistributionsTransform); ndt_->setTransformationEpsilon(0.01); ndt_->setStepSize(0.1); ndt_->setResolution(1.0); ndt_->setMaximumIterations(35); depth_sub_ = nh.subscribe("/depth/image_raw", 1, &VolumeEstimation::depthCallback, this); pcl_pub_ = nh.advertise("/pcl_cloud", 1); voxel_pub_ = nh.advertise("/pcl_cloud_voxel", 1); smoothed_pub_ = nh.advertise("/pcl_cloud_smoothed", 1); rotated_pub_ = nh.advertise("/pcl_cloud_rotated", 1); transformed_pub_ = nh.advertise("/pcl_cloud_transformed", 1); registered_pub_ = nh.advertise("/pcl_cloud_registered", 1); } ~VolumeEstimation() {} void depthCallback(const sensor_msgs::ImageConstPtr& msg) { try { cv::Mat depth = cv_bridge::toCvShare(msg, "16UC1")->image; cloud_->height = depth.rows; cloud_->width = depth.cols; cloud_->is_dense = false; cloud_->points.resize(cloud_->height * cloud_->width); int index = 0; for (int i = 0; i < depth.rows; ++i) { for (int j = 0; j points[index]; point.x = (j - cx_) * depth.at(i,j) / fx_; point.y = (i - cy_) * depth.at(i,j) / fy_; point.z = depth.at(i,j) * 0.001; index++; } } pcl_conversions::toPCL(ros::Time::now(), cloud_->header.stamp); cloud_->header.frame_id = "realsense_frame"; pcl_pub_.publish(cloud_); passthroughFilter(cloud_); voxelGridFilter(cloud_filtered_); progressiveMorphFilter(cloud_filtered_, cloud_smoothed_); transformPointCloud(cloud_smoothed_, cloud_transformed_); ndtRegistration(cloud_transformed_, registered_); sensor_msgs::PointCloud2 pcl_cloud; pcl::toROSMsg(*cloud_, pcl_cloud); voxel_pub_.publish(pcl_cloud); pcl::toROSMsg(*cloud_smoothed_, pcl_cloud); smoothed_pub_.publish(pcl_cloud); pcl::toROSMsg(*cloud_rotated_, pcl_cloud); rotated_pub_.publish(pcl_cloud); pcl::toROSMsg(*cloud_transformed_, pcl_cloud); transformed_pub_.publish(pcl_cloud); pcl::toROSMsg(*registered_, pcl_cloud); registered_pub_.publish(pcl_cloud); } catch (cv_bridge::Exception& e) { ROS_ERROR("cv_bridge exception: %s", e.what()); } } void passthroughFilter(const pcl::PointCloud::Ptr& cloud_in) { pcl::PassThrough filter; filter.setInputCloud(cloud_in); filter.setFilterFieldName("z"); filter.setFilterLimits(0.01, 1.0); filter.filter(*cloud_filtered_); cloud_filtered_->header.frame_id = "realsense_frame"; } void voxelGridFilter(const pcl::PointCloud::Ptr& cloud_in) { pcl::VoxelGrid filter; filter.setInputCloud(cloud_in); filter.setLeafSize(0.025, 0.025, 0.025); filter.filter(*cloud_filtered_); cloud_filtered_->header.frame_id = "realsense_frame"; } void progressiveMorphFilter(const pcl::PointCloud::Ptr& cloud_in, pcl::PointCloud::Ptr& cloud_out) { pcl::ProgressiveMorphologicalFilter filter; filter.setInputCloud(cloud_in); filter.setMaxWindowSize(20); filter.setSlope(0.5f); filter.setInitialDistance(0.5f); filter.setThreshold(0.1f); filter.setErosionIterations(2); filter.setDilationIterations(2); filter.setNumberOfThreads(4); filter.filter(*cloud_out); cloud_out->header.frame_id = "realsense_frame"; } void transformPointCloud(const pcl::PointCloud::Ptr& cloud_in, pcl::PointCloud::Ptr& cloud_out) { pcl::PointCloud::Ptr cloud_rotated(new pcl::PointCloud); Eigen::Matrix4f transform = Eigen::Matrix4f::Identity(); float theta = -M_PI / 2.0; transform(0,0) = std::cos(theta); transform(0,1) = -std::sin(theta); transform(1,0) = std::sin(theta); transform(1,1) = std::cos(theta); pcl::transformPointCloud(*cloud_in, *cloud_rotated, transform); pcl::PassThrough filter; filter.setInputCloud(cloud_rotated); filter.setFilterFieldName("z"); filter.setFilterLimits(0.01, 1.5); filter.filter(*cloud_out); cloud_out->header.frame_id = "realsense_frame"; } void ndtRegistration(const pcl::PointCloud::Ptr& cloud_in, pcl::PointCloud::Ptr& cloud_out) { pcl::PointCloud::Ptr cloud_init(new pcl::PointCloud); pcl::VoxelGrid voxel; voxel.setLeafSize(0.05, 0.05, 0.05); voxel.setInputCloud(cloud_in); voxel.filter(*cloud_init); ndt_->setInputSource(cloud_init); ndt_->setInputTarget(cloud_out); pcl::PointCloud::Ptr output_cloud(new pcl::PointCloud); ndt_->align(*output_cloud); Eigen::Matrix4f transform = ndt_->getFinalTransformation(); pcl::transformPointCloud(*cloud_init, *cloud_out, transform); cloud_out->header.frame_id = "realsense_frame"; } private: ros::Subscriber depth_sub_; ros::Publisher pcl_pub_; ros::Publisher voxel_pub_; ros::Publisher smoothed_pub_; ros::Publisher rotated_pub_; ros::Publisher transformed_pub_; ros::Publisher registered_pub_; pcl::PointCloud::Ptr cloud_; pcl::PointCloud::Ptr cloud_filtered_; pcl::PointCloud::Ptr cloud_smoothed_; pcl::PointCloud::Ptr cloud_rotated_; pcl::PointCloud::Ptr cloud_transformed_; pcl::PointCloud::Ptr registered_; std::unique_ptr<pcl::NormalDistributionsTransform> ndt_; float fx_ = 385.255, fy_ = 385.255, cx_ = 320.5, cy_ = 240.5; }; int main(int argc, char* argv[]) { ros::init(argc, argv, "volume_estimation"); ros::NodeHandle nh, pnh("~"); VolumeEstimation estimation(nh, pnh); ros::spin(); return 0; }
五、結論
realsense d435i是一款高質量的深度相機,可以應用於機器人、工業自動化、虛擬現實等多個領域。通過使用realsense SDK和ROS,我們可以方便地與realsense d435i相機進行交互,並進行深度信息的採集和處理。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/190384.html