本文目錄一覽:
- 1、python數據可視化–可視化概述
- 2、python 可視化界面怎麼做
- 3、做完數據分析後,用什麼可視化工具展示分析結果?
- 4、現在市場上有PowerBi或者Tableau可以做很好的圖表,那還有人用Python來製作可視化圖表嗎?有什麼優點?
- 5、Python數據分析:可視化
- 6、Python中數據可視化經典庫有哪些?
python數據可視化–可視化概述
數據可視化是python最常見的應用領域之一,數據可視化是藉助圖形化的手段將一組數據以圖形的形式表達出來,並利用數據分析和開發工具發現其中未知信息的數據處理過程。
在學術界有一句話廣為流傳,A picture worths thousand words,就是一圖值千言。在課堂上,我經常舉的例子就是大家在刷朋友圈的時候如果看到有人轉發一篇題目很吸引人的文章時,我們都會點擊進去,可能前幾段話會很認真地看,文章很長的時候後面就會一目十行,失去閱讀的興趣。
所以將數據、表格和文字等內容用圖表的形式表達出來,既能提高讀者閱讀的興趣,還能直觀表達想要表達的內容。
python可視化庫有很多,下面列舉幾個最常用的介紹一下。
matplotlib
它是python眾多數據可視化庫的鼻祖,也是最基礎的底層數據可視化第三方庫,語言風格簡單、易懂,特別適合初學者入門學習。
seaborn
Seaborn是在matplotlib的基礎上進行了更高級的API封裝,從而使得作圖更加容易,在大多數情況下使用seaborn能做出很具有吸引力的圖,而使用matplotlib就能製作具有更多特色的圖。應該把Seaborn視為matplotlib的補充,而不是替代物。
pyecharts
pyecharts是一款將python與echarts結合的強大的數據可視化工具,生成的圖表精巧,交互性良好,可輕鬆集成至 Flask,Sanic,Django 等主流 Web 框架,得到眾多開發者的認可。
bokeh
bokeh是一個面向web瀏覽器的互動式可視化庫,它提供了多功能圖形的優雅、簡潔的構造,並在大型數據集或流式數據集上提供高性能的交互性。
python這些可視化庫可以便捷、高效地生成豐富多彩的圖表,下面列舉一些常見的圖表。
柱形圖
條形圖
坡度圖
南丁格爾玫瑰圖
雷達圖
詞雲圖
散點圖
等高線圖
瀑布圖
相關係數圖
散點曲線圖
直方圖
箱形圖
核密度估計圖
折線圖
面積圖
日曆圖
餅圖
圓環圖
馬賽克圖
華夫餅圖
還有地理空間型等其它圖表,就不一一列舉了,下節開始我們先學習matplotlib這個最常用的可視化庫。
python 可視化界面怎麼做
首先,如果沒有安裝python和PyQt軟體的請先直接搜索下載並安裝。python是一個開源軟體,因此都是可以在網上免費下載的,最新版本即可。下載完成後,我們先打開PyQt designer。
2
打開後,首先是一個默認的新建窗口界面,在這裡我們就選擇默認的窗口即可。
3
現在是一個完全空白的窗口。第一步我們要先把所有的設計元素都拖進這個窗口。我們先拖入一個「Label」,就是一個不可編輯的標籤。
隨後我們再拖入一個可以編輯的「Line Edit」
最後我們拖入最後一個元素:「PushButton」按鈕,也就是平時我們所點的確定。
目前我們已經把所有所需要的元素都拖入了新建的窗口。對於每一個元素,我們都可以雙擊進行屬性值的修改,此時我們僅需要雙擊改個名字即可
此時我們已經完成了一半,接下來需要對動作信號進行操作。我們需要先切入編輯信號的模式
此時把滑鼠移動到任意元素,都會發現其變成紅色,代表其被選中。
當我們選中pushbutton後,繼續拖動滑鼠指向上面的line edit,會發現由pushbutton出現一個箭頭指向了line edit,代表pushbutton的動作會對line edit進行操作。
隨即會彈出一個配置連接窗口。左邊的是pushbutton的操作,我們選擇clicked(),即點擊pushbutton。
右邊是對line edit的操作,我們選擇clear(),即清楚line edit中的內容。
最後我們點擊確定。
保存完成後,我們在PyQt中的操作就已經完成了。保存的文件名我們命名為test,PyQt生成的設計文件後綴是.ui。
做完數據分析後,用什麼可視化工具展示分析結果?
市面上常見的數據可視化工具有挺多,個人覺得真正有用的有以下幾款:
1. Powerpoint
所謂的Powerpoint,其實就是經常所說的PPT。作為微軟老大哥經典的軟體工具,其商務場合出現的頻次無人能及。而我身邊很多數據分析師的朋友,其可視化的最終結果,通常都是用PPT來進行呈現的。
2. Excel
對於數據分析師而言,Excel就像是瑞士軍刀,便捷、所見即所得的數據處理方式讓分析師愛不釋手。但,Excel的報表功能也是不能忽略的。通過Excel自帶的圖表功能,我們可以將自己分析的報表結果黏貼成Dashboard的形式。並且,只要更改數據源,就可以將鏈接數據的Dashboard進行實時更改。
3.Echarts
隨著在數據分析行業越來越久,你就會發現無論是PPT還是Excel,其自帶的圖表樣式還是很有限的。如果你想把玩更加豐富的圖表類型,強烈推薦百度的Echarts工具。當然,這款工具需要學會一定的JS代碼。
另外,如果你會用Axure,你還可以將Echarts做的圖表嵌入到Axure的原型中,以網頁的形式給別人展示你的可視化結果。
4.PowerBI儀錶盤工具
微軟或許也發現了自己傳統工具的弊端,因此生產了PowerBI儀錶盤工具。只要你會用Excel,短短几周你就可以學會使用PowerBI。通過藉助PowerBI,你可以製作出豐富多彩的圖表Dashboard,並且支持多維度層層剖析等功能。
當然,除了以上工具,還有很多可視化平台,比如Tableau、BDP等。
現在市場上有PowerBi或者Tableau可以做很好的圖表,那還有人用Python來製作可視化圖表嗎?有什麼優點?
鏈接:
提取碼:yz10
PythonTableau:商業數據分析與可視化。Tableau的程序很容易上手,各公司可以用它將大量數據拖放到數字「畫布」上,轉眼間就能創建好各種圖表。這一軟體的理念是,界面上的數據越容易操控,公司對自己在所在業務領域裡的所作所為到底是正確還是錯誤,就能了解得越透徹。
快速分析:在數分鐘內完成數據連接和可視化。Tableau 比現有的其他解決方案快 10 到 100 倍。大數據,任何數據:無論是電子表格、資料庫還是 Hadoop 和雲服務,任何數據都可以輕鬆探索。
課程目錄:
前置課程-Python在諮詢、金融、四大等領域的應用以及效率提升
Python基礎知識
Python入門:基於Anaconda與基於Excel的Python安裝和界面
簡單的數學計算
Python數據分析-時間序列2-數據操作與繪圖
Python數據分析-時間序列3-時間序列分解
……
Python數據分析:可視化
本文是《數據蛙三個月強化課》的第二篇總結教程,如果想要了解 數據蛙社群 ,可以閱讀 給DataFrog社群同學的學習建議 。溫馨提示:如果您已經熟悉python可視化內容,大可不必再看這篇文章,或是之挑選部分文章
對於我們數據分析師來說,不僅要自己明白數據背後的含義,而且還要給老闆更直觀的展示數據的意義。所以,對於這項不可缺少的技能,讓我們來一起學習下吧。
畫圖之前,我們先導入包和生成數據集
我們先看下所用的數據集
折線圖是我們觀察趨勢常用的圖形,可以看出數據隨著某個變數的變化趨勢,默認情況下參數 kind=”line” 表示圖的類型為折線圖。
對於分類數據這種離散數據,需要查看數據是如何在各個類別之間分布的,這時候就可以使用柱狀圖。我們為每個類別畫出一個柱子。此時,可以將參數 kind 設置為 bar 。
條形圖就是將豎直的柱狀圖翻轉90度得到的圖形。與柱狀圖一樣,條形圖也可以有一組或多種多組數據。
水平條形圖在類別名稱很長的時候非常方便,因為文字是從左到右書寫的,與大多數用戶的閱讀順序一致,這使得我們的圖形容易閱讀。而柱狀圖在類別名稱很長的時候是沒有辦法很好的展示的。
直方圖是柱形圖的特殊形式,當我們想要看數據集的分布情況時,選擇直方圖。直方圖的變數劃分至不同的範圍,然後在不同的範圍中統計計數。在直方圖中,柱子之間的連續的,連續的柱子暗示數值上的連續。
箱線圖用來展示數據集的描述統計信息,也就是[四分位數],線的上下兩端表示某組數據的最大值和最小值。箱子的上下兩端表示這組數據中排在前25%位置和75%位置的數值。箱中間的橫線表示中位數。此時可以將參數 kind 設置為 box。
如果想要畫出散點圖,可以將參數 kind 設置為 scatter,同時需要指定 x 和 y。通過散點圖可以探索變數之間的關係。
餅圖是用面積表示一組數據的佔比,此時可以將參數 kind 設置為 pie。
我們剛開始學習的同學,最基本應該明白什麼數據應該用什麼圖形來展示,同學們來一起總結吧。
Python中數據可視化經典庫有哪些?
Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。
matplotlib
是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,嚮應用程序嵌入式繪圖提供了應用程序介面。
pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。
優點:繪圖質量高,可繪製出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕鬆,通過Matplotlib可以很輕鬆地畫一些或簡單或複雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。
pandas
Pandas 是一個開放源碼、BSD 許可的庫,提供高性能、易於使用的數據結構和數據分析工具。Pandas 廣泛應用在學術、金融、統計學等各個數據分析領域。需要說明的是它不是「熊貓」,名字衍生自術語 “panel data”(面板數據)和 “Python data analysis”(Python 數據分析)。
優點:是Python的核心數據分析支持庫,提供了快速、靈活、明確的數據結構,旨在簡單、直觀的處理關係型、標記型數據。對於數據分析專業人士,它是數據分析及可視化的利器。
seaborn
Seaborn是基於matplotlib的圖形可視化python包。它提供了一種高度互動式界面,便於用戶能夠做出各種有吸引力的統計圖表。
它是基於matplotlib更高級的API封裝,從而使得作圖更加容易,在大多數情況下使用seaborn能做出很具有吸引力的圖,應該把Seaborn視為matplotlib的補充,而不是替代物,它能高度兼容numpy與pandas數據結構以及scipy與statsmodels等統計模式。
優點:matplotlib高度封裝,代碼量少,圖表漂亮。比起matplotlib具有更美觀、更現代的調色板設計等優點。scikit-plot
這是一個跟機器學習有效結合的繪圖庫。想要深入學習的小夥伴參見其github倉庫,這裡不再贅述了。
優點:Scikit-Plot是由ReiichiroNakano創建的用在機器學習的可視化工具,能最快速簡潔的畫出用Matplotlib要寫很多行語句才能畫出的圖。關鍵是對於機器學習相關可視化處理,該庫有較好的支持。
Networkx
networkx是Python的一個包,用於構建和操作複雜的圖結構,提供分析圖的演算法。圖是由頂點、邊和可選的屬性構成的數據結構,頂點表示數據,邊是由兩個頂點唯一確定的,表示兩個頂點之間的關係。頂點和邊也可以擁有更多的屬性,以存儲更多的信息。
優點:用於創建、操縱和研究複雜網路的結構、以及學習複雜網路的結構、功能及其動力學。
上面是我的回答,希望對您有所幫助!
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/189468.html