一、概述
生成對抗網路(GAN)被廣泛應用於圖像和語音處理等眾多領域,同時也是計算機科學領域中備受關注的課題之一。GANPytorch是一個基於Pytorch框架的GAN工具庫,它提供了一種簡便的方式讓開發者們能夠更快地使用GAN模型,以訓練和生成高質量的圖像和語音。GANPytorch的核心思想就是利用卷積神經網路(CNN)來對真實圖像進行建模,而用另一個神經網路來生成類似真實圖像的樣本。
二、GANPytorch架構
GANPytorch包含兩個主要的組件:生成器(generator)和判別器(discriminator)。生成器使用前饋神經網路(feed-forward neural network)來生成樣本,而判別器則使用基於CNN的神經網路來判定一個輸入樣本是否足夠真實。兩個組件是互相競爭的,也就是說,只有當生成器成功愚弄了判別器並生成了足夠真實的樣本時,才算是訓練成功。GANPytorch的代碼框架如下所示:
class discriminator(nn.Module):
def __init__(self, img_shape):
super(discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super(generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(256, momentum=0.8),
nn.Linear(256, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(512, momentum=0.8),
nn.Linear(512, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(1024, momentum=0.8),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh(),
)
self.img_shape = img_shape
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
三、GANPytorch應用
1、圖像生成
圖像生成是GANPytorch最常見的應用之一。一個典型的例子是,給定一組文本描述,GANPytorch可以生成與之相符的圖片。GANPytorch中的生成器網路可以根據外部輸入生成一系列表示該輸入的圖像。
#初始化生成器和判別器
generator = Generator(latent_dim=100)
discriminator = Discriminator()
#定義損失函數和優化器
adversarial_loss = torch.nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
#開始訓練GAN模型
for epoch in range(n_epochs):
for i, (imgs, _) in enumerate(dataloader):
#訓練判別器
optimizer_D.zero_grad()
real_imgs = Variable(imgs.type(Tensor))
validity_real = discriminator(real_imgs)
loss_D_real = adversarial_loss(validity_real, valid)
fake_imgs = generator(z)
validity_fake = discriminator(fake_imgs.detach())
loss_D_fake = adversarial_loss(validity_fake, fake)
loss_D = (loss_D_real + loss_D_fake) / 2
loss_D.backward()
optimizer_D.step()
#訓練生成器
optimizer_G.zero_grad()
validity = discriminator(fake_imgs)
loss_G = adversarial_loss(validity, valid)
loss_G.backward()
optimizer_G.step()
2、圖像遷移
GANPytorch也可以被用於圖像遷移。應用該方法可以將一個圖像A中的某些要素,如面部表情、髮型等,遷移到另一張圖像B上。在訓練過程中,判別器網路不僅需要鑒別圖像是真實的還是生成的,還需要鑒別輸入圖像屬於哪個類別。
#初始化GAN模型,並定義損失函數和優化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
class_loss = torch.nn.CrossEntropyLoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))
#開始訓練GAN模型
for epoch in range(n_epochs):
for i, (real_imgs, labels) in enumerate(dataloader):
labels = labels.type(torch.LongTensor)
real_labels = Variable(labels.cuda())
valid = Variable(Tensor(real_imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(real_imgs.size(0), 1).fill_(0.0), requires_grad=False)
# Generate a batch of images
z = Variable(Tensor(np.random.normal(0, 1, (real_imgs.shape[0], latent_dim))))
gen_imgs = generator(z)
#--------------------
# Train Discriminator
#--------------------
dis_optimizer.zero_grad()
# Loss for real images
real_validity, real_classes = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_validity, valid) + class_loss(real_classes, real_labels)) / 2
# Loss for fake images
fake_validity, fake_classes = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_validity, fake) + class_loss(fake_classes, real_labels)) / 2
# Total discriminator loss
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
dis_optimizer.step()
#--------------------
# Train Generator
#--------------------
gen_optimizer.zero_grad()
# Loss measures generator's ability to fool the discriminator
validity, pred_classes = discriminator(gen_imgs)
g_loss = (adversarial_loss(validity, valid) + class_loss(pred_classes, real_labels)) / 2
g_loss.backward()
gen_optimizer.step()
3、聲音處理
GANPytorch不僅可以處理圖像,還可以處理聲音。GANPytorch可以被用於音樂合成、語音識別等領域。
#初始化GAN模型,並定義損失函數和優化器
generator = Generator()
discriminator = Discriminator()
adversarial_loss = torch.nn.MSELoss()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.99))
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.99))
#開始訓練GAN模型
for epoch in range(n_epochs):
for i, (real_audio, _) in enumerate(dataloader):
real_audio = real_audio.type(Tensor)
valid = Variable(Tensor(real_audio.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(real_audio.size(0), 1).fill_(0.0), requires_grad=False)
# Generate a batch of audios
z = Variable(Tensor(np.random.normal(0, 1, (real_audio.shape[0], latent_dim))))
gen_audio = generator(z)
#--------------------
# Train Discriminator
#--------------------
dis_optimizer.zero_grad()
# Loss for real audios
real_validity = discriminator(real_audio)
d_real_loss = adversarial_loss(real_validity, valid)
# Loss for fake audios
fake_validity = discriminator(gen_audio.detach())
d_fake_loss = adversarial_loss(fake_validity, fake)
# Total discriminator loss
d_loss = d_real_loss + d_fake_loss
d_loss.backward()
dis_optimizer.step()
#--------------------
# Train Generator
#--------------------
gen_optimizer.zero_grad()
# Loss measures generator's ability to fool the discriminator
validity = discriminator(gen_audio)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
gen_optimizer.step()
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/185724.html