本文目錄一覽:
- 1、python網路編程可以用來做什麼
- 2、如何使用python進行撥號上網及斷開連接?
- 3、BP神經網路——Python簡單實現三層神經網路(Numpy)
- 4、如何用9行Python代碼編寫一個簡易神經網路
python網路編程可以用來做什麼
下面是Python的應用及崗位。
第一部分:各個領域應用的語言。
大家看這個內容,其實你很明顯發現,其實各個語言都有他的用處。我們可以說Python是應用最廣的。但是暫時還是不能說它是全能的,因為他也有它的短板,但是對於一般的小公司和小項目而言,是很難得的全能。
現在有個很奇怪的現象,就是大家把Python神話了。Python作為一門語言,確實有他的優勢。但是建議大家在學好這個語言的同時,要學第二門語言,這樣未來對大家有好的發展。
第二環節:Python工程師在企業裡面的定位是什麼?
四個重要的定位:驗證演算法、快速開發、測試運維、數據分析。
1、驗證演算法:就是對我們公司一些常見設計演算法或者公式的驗證,公式代碼化。
2、快速開發:這個大家應該都比較熟悉,快速開發,就是用成熟框架,更少的代碼來開發網站,Python在網站前後台有大量的成熟的框架,如django,flask,bottle,tornado,flask和django的使用較多,國內用Python開發的網站有:知乎、豆瓣、扇貝、騰訊、阿里巴巴;
3、測試運維:用python實現的測試工具及過程,包含伺服器端、客戶端、web、andriod、client端的自動化測試,自動化性能測試的執行、監控和分析,常用selenium appium等
框架。做運維同學應該清楚,在Linux運維工作中日常操作涵蓋了監控,部署,網路配置,日誌分析,安全檢測 等等許許多多的方面,無所不包。python可以寫很多的腳本,把「操作」這個行為做到極致。與此同時,python在伺服器管理工具上非常豐富,配置管理(saltstack) 批量執行( fabric, saltstack) 監控(Zenoss, nagios 插件) 虛擬化管理( python-libvirt) 進程管理 (supervisor) 雲計算(openstack) …… 還有大部分系統C庫都有python綁定。
4、數據分析:Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底層使用C語言實現的,所以速度很快,用它參加各種數學建模大賽,完全可以替代r語言和MATLAB。spark,Hadoop都開了Python的介面,所以使用Python做大數據的mapreduce也非常簡單,加上py對資料庫支持都很好,或者類似sqlalchemy的orm也非常強大好用。
在結束這個部分之前,大家有沒有一個疑問:為什麼爬蟲沒有中重點講?
其實這裡給大家重點說一下,如果你要學好Python,僅僅停留在爬蟲上,這個是很不靠譜的。Python 寫爬蟲的教程網上一抓一大把,據大家所知很多初學 Python 的人都是使用它編寫爬蟲程序。小到抓取一個小黃圖網站,大到一個互聯網公司的商業應用。通過 Python 入門爬蟲比較簡單易學,不需要在一開始掌握太多太基礎太底層的知識就可以很快上手,而且很快可以做出成果,非常適合小白一開始想做出點看得見的東西的成就感。
除了入門,爬蟲也被廣泛應用到一些需要數據的公司、平台和組織,通過抓取互聯網上的公開數據,來實現一些商業價值是非常常見的做法。
當然這些選手的爬蟲就要厲害的多了,需要處理包括路由、存儲、分散式計算等很多問題,與小白的抓黃圖小程序,複雜度差了很多倍。
如何使用python進行撥號上網及斷開連接?
我知道你想幹什麼壞事。
1.在路由上設置撥號上網,用python urllib2模塊模擬人為操作登錄路由器撥號的斷開連接。通用性不好。不推薦。
2.用python sendkeys模塊模擬按鍵操作,很容易實現,不夠可靠,不推薦。
3.rasdial.exe是WINDOWS 下的命令行工具,可以斷開和連接網路連接。你用python調這個工具來實現就行。容易實現,推薦。
4.再就是樓上說的win32ras模塊。推薦。
BP神經網路——Python簡單實現三層神經網路(Numpy)
我們將在Python中創建一個NeuralNetwork類,以訓練神經元以給出準確的預測。該課程還將具有其他幫助程序功能。
1. 應用Sigmoid函數
我們將使用 Sigmoid函數 (它繪製一條「 S」形曲線)作為神經網路的激活函數。
2. 訓練模型
這是我們將教神經網路做出準確預測的階段。每個輸入將具有權重(正或負)。
這意味著具有大量正權重或大量負權重的輸入將對結果輸出產生更大的影響。
我們最初是將每個權重分配給一個隨機數。
本文參考翻譯於此網站 —— 原文
如何用9行Python代碼編寫一個簡易神經網路
學習人工智慧時,我給自己定了一個目標--用Python寫一個簡單的神經網路。為了確保真得理解它,我要求自己不使用任何神經網路庫,從頭寫起。多虧了Andrew Trask寫得一篇精彩的博客,我做到了!下面貼出那九行代碼:
在這篇文章中,我將解釋我是如何做得,以便你可以寫出你自己的。我將會提供一個長點的但是更完美的源代碼。
首先,神經網路是什麼?人腦由幾千億由突觸相互連接的細胞(神經元)組成。突觸傳入足夠的興奮就會引起神經元的興奮。這個過程被稱為「思考」。
我們可以在計算機上寫一個神經網路來模擬這個過程。不需要在生物分子水平模擬人腦,只需模擬更高層級的規則。我們使用矩陣(二維數據表格)這一數學工具,並且為了簡單明了,只模擬一個有3個輸入和一個輸出的神經元。
我們將訓練神經元解決下面的問題。前四個例子被稱作訓練集。你發現規律了嗎?『?』是0還是1?
你可能發現了,輸出總是等於輸入中最左列的值。所以『?』應該是1。
訓練過程
但是如何使我們的神經元回答正確呢?賦予每個輸入一個權重,可以是一個正的或負的數字。擁有較大正(或負)權重的輸入將決定神經元的輸出。首先設置每個權重的初始值為一個隨機數字,然後開始訓練過程:
取一個訓練樣本的輸入,使用權重調整它們,通過一個特殊的公式計算神經元的輸出。
計算誤差,即神經元的輸出與訓練樣本中的期待輸出之間的差值。
根據誤差略微地調整權重。
重複這個過程1萬次。
最終權重將會變為符合訓練集的一個最優解。如果使用神經元考慮這種規律的一個新情形,它將會給出一個很棒的預測。
這個過程就是back propagation。
計算神經元輸出的公式
你可能會想,計算神經元輸出的公式是什麼?首先,計算神經元輸入的加權和,即
接著使之規範化,結果在0,1之間。為此使用一個數學函數--Sigmoid函數:
Sigmoid函數的圖形是一條「S」狀的曲線。
把第一個方程代入第二個,計算神經元輸出的最終公式為:
你可能注意到了,為了簡單,我們沒有引入最低興奮閾值。
調整權重的公式
我們在訓練時不斷調整權重。但是怎麼調整呢?可以使用「Error Weighted Derivative」公式:
為什麼使用這個公式?首先,我們想使調整和誤差的大小成比例。其次,乘以輸入(0或1),如果輸入是0,權重就不會調整。最後,乘以Sigmoid曲線的斜率(圖4)。為了理解最後一條,考慮這些:
我們使用Sigmoid曲線計算神經元的輸出
如果輸出是一個大的正(或負)數,這意味著神經元採用這種(或另一種)方式
從圖四可以看出,在較大數值處,Sigmoid曲線斜率小
如果神經元認為當前權重是正確的,就不會對它進行很大調整。乘以Sigmoid曲線斜率便可以實現這一點
Sigmoid曲線的斜率可以通過求導得到:
把第二個等式代入第一個等式里,得到調整權重的最終公式:
當然有其他公式,它們可以使神經元學習得更快,但是這個公式的優點是非常簡單。
構造Python代碼
雖然我們沒有使用神經網路庫,但是將導入Python數學庫numpy里的4個方法。分別是:
exp--自然指數
array--創建矩陣
dot--進行矩陣乘法
random--產生隨機數
比如, 我們可以使用array()方法表示前面展示的訓練集:
「.T」方法用於矩陣轉置(行變列)。所以,計算機這樣存儲數字:
我覺得我們可以開始構建更優美的源代碼了。給出這個源代碼後,我會做一個總結。
我對每一行源代碼都添加了注釋來解釋所有內容。注意在每次迭代時,我們同時處理所有訓練集數據。所以變數都是矩陣(二維數據表格)。下面是一個用Python寫地完整的示例代碼。
我們做到了!我們用Python構建了一個簡單的神經網路!
首先神經網路對自己賦予隨機權重,然後使用訓練集訓練自己。接著,它考慮一種新的情形[1, 0, 0]並且預測了0.99993704。正確答案是1。非常接近!
傳統計算機程序通常不會學習。而神經網路卻能自己學習,適應並對新情形做出反應,這是多麼神奇,就像人類一樣。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/158320.html