一、空間注意力的概念
空間注意力是指人類大腦在處理感知信息時,在一定的空間範圍內,對某些信息進行有意識地加工以及加以記錄,而對其他信息則不予理會。空間注意力注重的是在空間上的區分,它隨著時間的推移會引導視線和注意力向新的視覺目標位置轉移,在視覺場景中發揮了至關重要的作用。
// 空間注意力模型的實現import torchimport torch.nn as nnimport torch.nn.functional as Fclass SpatialAttention(nn.Module): def __init__(self, kernel_size=3): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(in_channels=3, out_channels=1, kernel_size=kernel_size, padding=padding, bias=False) def forward(self, x): conv_out = self.conv(x) output = torch.sigmoid(conv_out) return output * x
二、空間注意力的作用
空間注意力可以幫助我們更好地感知環境,提高注意力的聚焦度,從而加強目標信息的處理。空間注意力可以用於圖像識別、人臉識別、行為識別等方面,在生產和生活中有著廣泛的應用。
三、空間注意力的應用
1. 圖像識別
圖像識別是空間注意力應用的一個重要方面。將空間注意力應用於圖像識別任務中,可以使模型著重關注圖像中重要的區域,提高模型的準確率。
# 空間注意力在圖像分類模型中的應用import torchimport torch.nn as nnimport torch.nn.functional as Ffrom collections import OrderedDictclass SpatialAttentionNet(nn.Module): def __init__(self, num_classes=10): super(SpatialAttentionNet, self).__init__() self.conv = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1)), ('relu1', nn.ReLU(inplace=True)), ('conv2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)), ('relu2', nn.ReLU(inplace=True)), ('pool1', nn.MaxPool2d(kernel_size=2, stride=2)), ('conv3', nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)), ('relu3', nn.ReLU(inplace=True)), ('attention1', SpatialAttention()), ('conv4', nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1)), ('relu4', nn.ReLU(inplace=True)), ('conv5', nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)), ('relu5', nn.ReLU(inplace=True)), ('pool2', nn.MaxPool2d(kernel_size=2, stride=2)), ('conv6', nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)), ('relu6', nn.ReLU(inplace=True)), ('attention2', SpatialAttention()), ('conv7', nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1)), ('relu7', nn.ReLU(inplace=True)), ('pool3', nn.MaxPool2d(kernel_size=2, stride=2)), ('flatten', nn.Flatten()), ('fc1', nn.Linear(in_features=512 * 4 * 4, out_features=1024)), ('relu8', nn.ReLU(inplace=True)), ('fc2', nn.Linear(in_features=1024, out_features=num_classes)) ])) def forward(self, x): x = self.conv(x) return F.log_softmax(x, dim=1)
2. 人臉識別
空間注意力在人臉識別中的應用,可以將目光集中在人臉的關鍵特徵點上,提高人臉的檢測和識別準確率。
# Spatial Attention在人臉識別中的應用import cv2import numpy as npcap = cv2.VideoCapture(0)face_cascade = cv2.CascadeClassifier("path-to-haarcascade-face.xml")while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5) for (x, y, w, h) in faces: face_roi = frame[y:y + h, x:x + w] face_gray = cv2.cvtColor(face_roi, cv2.COLOR_BGR2GRAY) face_gray = cv2.resize(face_gray, (50, 50)) face_gray = np.expand_dims(face_gray, axis=0) face_gray = np.expand_dims(face_gray, axis=0) attention = SpatialAttention(kernel_size=3) face_gray = attention(face_gray) cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) cv2.imshow("frame", frame) if cv2.waitKey(1) & 0xFF == ord('q'): breakcap.release()cv2.destroyAllWindows()
3. 行為識別
空間注意力在行為識別中的應用,可以將目光集中於被觀察者的重要行為特徵上,提高行為識別的準確率。
# 空間注意力在行為識別中的應用import torchimport torch.nn as nnclass BehaviorNet(nn.Module): def __init__(self, num_labels=5): super(BehaviorNet, self).__init__() self.cnn = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), SpatialAttention(kernel_size=3), nn.MaxPool2d(kernel_size=2), nn.Flatten(), nn.Linear(in_features=128*3*3, out_features=256), nn.ReLU(), nn.Dropout(0.4), ) self.fc = nn.Linear(in_features=256, out_features=num_labels) self.softmax = nn.Softmax(dim=1) def forward(self, x): cnn_out = self.cnn(x) effect_size = cnn_out.transpose(2,1).transpose(1,3).transpose(3,2) attention = SpatialAttention(kernel_size=3) attention_out = attention(effect_size) cnn_att = attention_out.transpose(3,2).transpose(1,3).transpose(2,1) fc_out = self.fc(cnn_att) output = self.softmax(fc_out) return output
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/153876.html