python處理las(python處理las文件)

本文目錄一覽:

python列表處理

list_1=[‘a’,’a’,’a’,’b’,’c’,’c’,’a’,’a’]

list_2=[]

temp=list_1[0]

count = 0

for item in list_1:

    if item!=temp:

        list_2.append( str(count) + temp)

        count=1

        temp=item

    else:

        count+=1

list_2.append( str(count) + temp)

print(list_2)

python如何處理大量excel數據?

使用pip install openpyxl即可,但是在windows下安裝的是2.2.6版本,但是centos自動安裝的是4.1版本。

from xlwt import Workbook, Formula

import xlrd

book = Workbook()

sheet1 = book.add_sheet(‘Sheet 1’)

sheet1.write(0,0,10)

sheet1.write(1,0,Formula(‘A1/B1’))

sheet2 = book.add_sheet(‘Sheet 2’)

row = sheet2.row(0)

row.write(2,Formula(“$A$1+$B$1*SUM(‘ShEEt 1’!$A$1:$b$2)”))

book = xlrd.open_workbook(‘formula.xls’)

sheet = book.sheets()[0]

for i in range(nrows):

print (sheet.cell(i,j).value)

Python

是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標準庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。

python如何處理excel

您好,方法

1、在python項目中,新建python文件,並依次導入xlrd和xlwt。

2、接著調用open_workbook()方法,打開一個excel文件。

3、調用sheet_by_name()方法,讀取文件的sheet頁。

4、如果是後面加了個s,sheet_names表示獲取excel中所有的sheet頁。

5、利用sheets()方法加序號,可以獲取某個sheet頁對象。

6、如果想要獲取excel某個sheet頁中記錄的總數,使用nrows。

7、在cell()中傳入兩個值,一個行一個列,然後value獲取對應單元格的值。

Python文本處理工具都有哪些?

1、 NLTK — Natural Language Toolkit

搞自然語言處理的同學應該沒有人不知道NLTK吧,這兒也就不多說了。不過引薦兩本書籍給剛剛觸摸NLTK或許需求具體了解NLTK的同學: 一個是官方的《Natural Language Processing with Python》,以介紹NLTK里的功用用法為主,一起附帶一些Python常識,一起國內陳濤同學友情翻譯了一個中文版,這兒可以看到:引薦《用Python進行自然語言處理》中文翻譯-NLTK配套書;另外一本是《Python Text Processing with NLTK 2.0 Cookbook》,這本書要深入一些,會涉及到NLTK的代碼結構,一起會介紹怎麼定製自己的語料和模型等,相當不錯。

2、 Pattern

Pattern由比利時安特衛普大學CLiPS實驗室出品,客觀的說,Pattern不僅僅是一套文本處理東西,它更是一套web數據挖掘東西,囊括了數據抓取模塊(包含Google, Twitter, 維基百科的API,以及爬蟲和HTML剖析器),文本處理模塊(詞性標示,情感剖析等),機器學習模塊(VSM, 聚類,SVM)以及可視化模塊等,可以說,Pattern的這一整套邏輯也是這篇文章的組織邏輯,不過這兒我們暫時把Pattern放到文本處理部分。我個人首要使用的是它的英文處理模塊Pattern.en, 有許多很不錯的文本處理功用,包含基礎的tokenize, 詞性標示,語句切分,語法檢查,拼寫糾錯,情感剖析,句法剖析等,相當不錯。

3、 TextBlob: Simplified Text Processing

TextBlob是一個很有意思的Python文本處理東西包,它其實是根據上面兩個Python東西包NLKT和Pattern做了封裝(TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both),一起供給了許多文本處理功用的介面,包含詞性標示,名詞短語提取,情感剖析,文本分類,拼寫檢查等,甚至包含翻譯和語言檢測,不過這個是根據Google的API的,有調用次數約束。

4、 MBSP for Python

MBSP與Pattern同源,同出自比利時安特衛普大學CLiPS實驗室,供給了Word Tokenization, 語句切分,詞性標示,Chunking, Lemmatization,句法剖析等根本的文本處理功用,感興趣的同學可以重視。

關於 Python文本處理工具都有哪些,環球青藤小編就和大家分享到這裡了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。

Python 數據處理(三十五)—— 文本數據處理

在 pandas 中,存儲文本主要有兩種方式

但一般建議使用 StringDtype 類型存儲文本數據。都是由於各種原因,現在字元串數據的默認存儲類型還是 object 。

要存儲為 string 類型,需要顯式的設置 dtype 參數

或者在創建 Series 或 DataFrame 之後,使用 astype 轉換類型

也可以使用 StringDtype/”string” 轉換其他非字元串類型的數據

轉換現有數據的類型

StringDtype 類型對象與 object 類型之間存在一些差異

兩個結果的輸出都是 Int64 類型。將其與 object 類型比較

當存在 NA 值時,輸出為 float64 。類似地,對於返回布爾值的方法

Series 和 Index 有一套字元串處理方法,可以方便地對數組的每個元素進行操作,最重要的是,這些方法會自動忽略缺失值。

這些方法可以通過 str 屬性訪問,通常具有與內置字元串方法相匹配的名稱

Index 上的字元串方法對於清理或轉換 DataFrame 的列特別有用。

例如,您可能有帶有前導或後置空格的列

因為 df.columns 是一個 Index 對象,所以我們可以使用 .str 訪問器

我們可以根據需要對列名進行處理,然後重新設置列名。

例如,我們刪除列名的前後空格,並將其改為小寫字母,同時用 _ 替換剩餘的空格

split 方法會返回一個值為 list 的 Series

可以使用 get 或 [] 訪問拆分後的列表中的元素

更簡單的方法是設置 expand 參數,返回一個 DataFrame

當原來的 Series 包含 StringDtype 類型的數據時,輸出列也將全部為 StringDtype

當然,也可以設置切割次數

它還有個對應的 rsplit 方法,從右邊起始對字元串進行拆分

replace 參數支持使用正則表達式,前兩個參數是 pat (匹配模式) 和 repl (替換字元串)

如果只是想要替換字元串字面值,可以將 regex 參數設置為 False ,而不需要對每個特殊字元進行轉義。此時 pat 和 repl 參數必須是字元串

此外, replace 方法還接受一個可調用的替換函數,會使用 re.sub() 方法在每個匹配的模式上調用該函數

該函數需要傳入一個正則對象作為位置參數,並返回一個字元串。例如

replace 方法的 pat 參數還接受 re.compile() 編譯的正則表達式對象。所有的 flags 需要在編譯正則對象時設置

如果在 replace 中設置 flags 參數,則會拋出異常

有幾種方法可以將一個 Series 或 Index 與自己或其他的 Series 或 Index 相連接,所有這些方法都是基於 cat() 方法

可以連接一個 Series 或 Index 的內容

如果未指定 sep 參數,則默認為空字元串

默認會跳過缺失值,也可以使用 na_rep 指定缺失值的表示方式

cat() 的第一個參數 others 可以是類似列表的對象,但是其長度需要和調用對象一致

只要兩個對象中存在缺失值,對應的結果中也是缺失值,除非指定了 na_rep

others 參數也可以是二維的,但是得保證其行數必須與調用的對象一致

對於 Series 或 DataFrame 的連接,可以通過設置 join 參數指定對齊方式

通常 join 可選範圍為: ‘left’ , ‘outer’ , ‘inner’ , ‘right’ 。此時,不再要求兩個對象長度一致

當 others 參數是 DataFrame 時,也可以使用

可以將一些類似數組的對象(如 Series , Index 等)放在一個類似列表的容器中,然後傳遞給 cat

對於沒有索引的對象,其長度必須與調用 cat 的對象相同。但是 Series 和 Index 可以是任意的,除非設置了 json=None 。

如果在 others 參數上包含不同索引的對象,且設置了 join=’right’ ,則最後的結果將會是這些索引的並集

如何用python進行數據分析

1、Python數據分析流程及學習路徑

數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。

根據每個部分需要用到的工具,Python數據分析的學習路徑如下:

相關推薦:《Python入門教程》

2、利用Python讀寫數據

Python讀寫數據,主要包括以下內容:

我們以一小段代碼來看:

可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。

3、利用Python處理和計算數據

在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。

Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。

Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。

5、利用Python數據可視化

數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。

原創文章,作者:AQYM,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/150127.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
AQYM的頭像AQYM
上一篇 2024-11-07 09:49
下一篇 2024-11-07 09:49

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智慧、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論