一、xDeepFM用法
xDeepFM是一種介於DNN和FM的演算法,通過卷積神經網路(CNN)引入FM中交叉特徵,這不僅可以解決FM中高階交叉的問題,同時也能保留低階交叉的特性,可以有效提高模型的預測準確率。
下面是一個簡單的使用示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['feature1', 'feature2', 'feature3', 'feature4'] dense_features = ['feature5', 'feature6'] # 生成訓練樣本 train_data = ... # 定義SparseFeat/DenseFeat類型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 將所有特徵列轉換為字典,方便模型訓練 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定義模型並進行編譯 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 訓練模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
二、xDeepFM之後的發展
xDeepFM的主要改進方向是優化CNN網路架構和提升特徵交叉性能。其中,Efficient xDeepFM(EffxDeepFM)演算法是基於xDeepFM的改進,通過增加channel-wise pooling和bottleneck layers來減小模型中的通道數,降低計算複雜度,同時優化特徵交叉層的權重。此外,Deep&Cross Network(DCN)演算法也是相似的,在原有DNN和Cross Network的基礎上增加了residual connection,可以進一步提高模型的性能。
三、xDeepFM優劣
xDeepFM演算法具有一下優勢:
1、xDeepFM在FM模型中引入CNN網路,有效解決了傳統FM演算法中高階特徵交叉的過擬合問題;
2、xDeepFM能夠保留低階特徵交叉的性質和信息,同時加入了高階特徵交叉,充分挖掘了特徵之間的關係;
3、xDeepFM能夠處理稀疏數據,並且能夠自動學習特徵權重,減少了人工特徵的工作量;
4、xDeepFM能夠支持多種任務,如分類和回歸等。
xDeepFM的主要缺點包括:
1、xDeepFM模型相對比較複雜,需要較大的訓練數據和計算資源;
2、xDeepFM演算法的解釋性相對較差,尤其是模型中的CNN網路部分。
四、xDeepFM怎麼讀
xDeepFM是由論文作者Jianxun Lian、Xiaohuan Zhou、Fuzheng Zhang、Zhongxia Chen共同提出的演算法,xDeepFM的讀法為「Ex-Deep-F-M」。
五、xDeepFM是什麼
xDeepFM是一種基於交叉特徵和卷積神經網路的模型,既保留了傳統FM演算法中低階特徵交叉的特性,又加入了卷積神經網路中高階特徵交叉,可以自動化學習特徵之間的聯繫。xDeepFM演算法可用於多種任務,如推薦、廣告和搜索等。
六、xDeepFM預測廣告
xDeepFM模型可以用於在線廣告推薦模塊,通過對廣告素材的特徵進行學習和預測,可以精準地將廣告投放給感興趣的人群。下面是一個使用xDeepFM預測廣告點擊率的示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['user_id', 'ad_id', 'product_id', 'advertiser_id', 'industry'] dense_features = ['creative_id'] # 生成訓練樣本 train_data = ... # 定義SparseFeat/DenseFeat類型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 將所有特徵列轉換為字典,方便模型訓練 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定義模型並進行編譯 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 訓練模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
七、xDeepFM是哪一年的
xDeepFM演算法於2018年由Jianxun Lian等人在論文《xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems》中提出。
八、xDeepFM推薦系統項目
xDeepFM演算法可以應用於推薦系統,用於推薦產品和服務。下面是一個使用xDeepFM模型的推薦系統項目的示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['user_id', 'item_id', 'category_id'] dense_features = ['score'] # 生成訓練樣本 train_data = ... # 定義SparseFeat/DenseFeat類型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 將所有特徵列轉換為字典,方便模型訓練 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定義模型並進行編譯 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 訓練模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
九、xDeepFM時間序列預測
xDeepFM模型也可以用於時間序列預測,例如預測股價或氣溫變化趨勢等。下面是一個使用xDeepFM模型的時間序列預測示例:
from deepctr.models import xDeepFM from deepctr.inputs import SparseFeat, DenseFeat, get_feature_names sparse_features = ['datetime'] dense_features = ['feature1', 'feature2', 'feature3'] # 生成訓練樣本 train_data = ... # 定義SparseFeat/DenseFeat類型 fixlen_feature_columns = [SparseFeat(feat, vocabulary_size=data[feat].nunique(),embedding_dim=4,) for feat in sparse_features] + [DenseFeat(feat, 1,) for feat in dense_features] # 將所有特徵列轉換為字典,方便模型訓練 dnn_feature_columns = fixlen_feature_columns linear_feature_columns = fixlen_feature_columns feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns) # 定義模型並進行編譯 model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy']) # 訓練模型 history = model.fit(train_model_input, train_label, batch_size=64, epochs=10, validation_split=0.2, )
十、xDeepFM效果比DeepFM差嗎
實驗表明,與傳統的DeepFM模型相比,xDeepFM演算法可以顯著提高模型預測準確率,如AUC、logloss和RMSE等指標,特別是在高緯稀疏場景下效果更加明顯。因此,xDeepFM演算法在推薦系統、廣告和時間序列預測等任務中表現更好。
原創文章,作者:PXAR,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/147942.html