python搜狗驗證碼,搜狗讀取驗證碼

本文目錄一覽:

python如何識別驗證碼

我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的註冊頁面有類似的驗證碼,頁面如下所示:

表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字元才可以完成註冊。

更多有關驗證碼的知識,可以參考這些文章:

Python3爬蟲進階:識別圖形驗證碼

Python3爬蟲進階:識別極驗滑動驗證碼

Python3爬蟲進階:識別點觸點選驗證碼

Python3爬蟲進階:識別微博宮格驗證碼

·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。

·準備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫:    brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了            tesserocr的安裝。

·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬    性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:

這樣我們就得到一張驗證碼圖片,以供測試識別使用。

相關推薦:《Python教程》

識別測試

接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:

這裡我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:

我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條幹擾了圖片的識別。

另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字元串,代碼如下:

不過這種方法的識別效果不如上一種的好。

驗證碼處理

對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。

我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:

傳入1即可將圖片進行二值化處理,如下所示:

我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:

在這裡,變數threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:

我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。

如何利用Python做簡單的驗證碼識別

先是獲取驗證碼樣本。。。我存了大概500個。

用dia測了測每個字之間的間距,直接用PIL開始切。

from PIL import Image

for j in range(0,500):

f=Image.open(“../test{}.jpg”.format(j))

for i in range(0,4):

f.crop((20+20*i,0,40+20*i,40)).save(“test{0}-{1}.jpg”.format(j,i+1))

上面一段腳本的意思是把jpg切成四個小塊然後保存

之後就是二值化啦。

def TotallyShit(im):

x,y=im.size

mmltilist=list()

for i in range(x):

for j in range(y):

if im.getpixel((i,j))200:

mmltilist.append(1)

else:

mmltilist.append(0)

return mmltilist

咳咳,不要在意函數的名字。上面的一段代碼的意思是遍歷圖片的每個像素點,顏色數值小於200的用1表示,其他的用0表示。

其中的im代表的是Image.open()類型。

切好的圖片長這樣的。

只能說這樣切的圖片還是很粗糙,很僵硬。

下面就是分類啦。

把0-9,「+」,」-「的圖片挑好並放在不同的文件夾裡面,這裡就是純體力活了。

再之後就是模型建立了。

這裡我試了自己寫的還有sklearn svm和sklearn neural_network。發現最後一個的識別正確率高的多。不知道是不是我樣本問題QAQ。

下面是模型建立的代碼

from sklearn.neural_network import MLPClassifier

import numpy as np

def clf():

clf=MLPClassifier()

mmltilist=list()

X=list()

for i in range(0,12):

for j in os.listdir(“douplings/douplings-{}”.format(i)):

mmltilist.append(TotallyShit(Image.open(“douplings/douplings-{0}/{1}”.format(i,j)).convert(“L”)))

X.append(i)

clf.fit(mmltilist,X)

return clf

大概的意思是從圖片源中讀取圖片和label然後放到模型中去跑吧。

之後便是圖像匹配啦。

def get_captcha(self):

with open(“test.jpg”,”wb”) as f:

f.write(self.session.get(self.live_captcha_url).content)

gim=Image.open(“test.jpg”).convert(“L”)

recognize_list=list()

for i in range(0,4):

part=TotallyShit(gim.crop((20+20*i,0,40+20*i,40)))

np_part_array=np.array(part).reshape(1,-1)

predict_num=int(self.clf.predict(np_part_array)[0])

if predict_num==11:

recognize_list.append(“+”)

elif predict_num==10:

recognize_list.append(“-“)

else:

recognize_list.append(str(predict_num))

return ”.join(recognize_list)

最後eval一下識別出來的字元串就得出結果了。。

順便提一句現在的bilibili登陸改成rsa加密了,麻蛋,以前的腳本全部作廢,心好痛。

登陸的代碼。

import time

import requests

import rsa

r=requests.session()

data=r.get(“act=getkey_=”+str(int(time.time()*1000))).json()

pub_key=rsa.PublicKey.load_pkcs1_openssl_pem(data[‘key’])

payload = {

‘keep’: 1,

‘captcha’: ”,

‘userid’: “youruserid”,

‘pwd’: b64encode(rsa.encrypt((data[‘hash’] +”yourpassword”).encode(), pub_key)).decode(),

}

r.post(“”,data=payload)

python 爬蟲,關於驗證碼的問題。輸入驗證碼才能搜索。

#給你個例子參考 驗證碼請求一次就變了

#!/usr/bin/python  

#coding=utf-8  

import requests

import urllib  

import urllib2,hashlib,md5

from BeautifulSoup import BeautifulSoup

import cookielib

def _md5(password):

    md5 = hashlib.md5() 

    md5.update(str.encode(password))

    psw = md5.hexdigest()

    return psw

url = ”

req = urllib2.Request(url)

res_data = urllib2.urlopen(req)

res = res_data.read()

output_file = open(‘1.jpg’, ‘wb’)  

output_file.writelines(res)  

output_file.close()

verifycode =  res_data.headers[‘Set-Cookie’].split(‘;’)[0]

verifycode = verifycode.replace(‘verifycode=’,”)

filename = res_data.headers[‘Content-disposition’].split(‘;’)[1].strip()

exec(filename)

cookiejar = cookielib.CookieJar()

opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar))

vidcode= raw_input(u”請輸入驗證碼(在本路徑 1.jpg): “) 

data = {‘user_login’:”lovesword85@yeah.net”,

        ‘isMd5’:”1″,

        ‘user_pwd’:_md5(‘love123456’),

        ‘verifycode’:vidcode,

        ‘url’:””}

url = ”

data = urllib.urlencode(data)

headers = {‘Content-Type’: ‘application/x-www-form-urlencoded’, ‘X-Requested-With’: ‘XMLHttpRequest’, ‘Cookie’: ‘verifycode={0};’.format(verifycode)}

request = urllib2.Request(url,data,headers)

response = opener.open(request)

print ‘——-result————-‘

print response.read()

print ‘——-headers————-‘

print response.headers

print ‘——-cookies————-‘

for cookie in cookiejar:

    print cookie

原創文章,作者:CHOX,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/143004.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
CHOX的頭像CHOX
上一篇 2024-10-14 18:48
下一篇 2024-10-19 16:31

相關推薦

  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智慧、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29

發表回復

登錄後才能評論