本文目錄一覽:
Python人工智慧學習需要多長時間
如需Python人工智慧培訓推薦選擇【達內教育】。Python人工智慧學習需要的時間,跟學員的基礎和所選的學習方式有很大關係。
1、學生基礎不同,學習人工智慧的時間也不同。零基礎學生人工智慧的學習周期一般為5個月左右。零基礎的學生沒有計算機編程開發經驗的能力,所以只能學習最基本的python編程語言。如果有相應的計算機程序或相關開發經驗,然後學習人工智慧,難度會小很多,學習所需的時間也會相應縮短。
2、學習方式不同,學習人工智慧的時間也不同。線下面授是這些教學方式中時間最長的一種,大概需要5個月的時間。網路遠程時間主要是利用業餘時間來學習,大多在晚上,時間比較長,一般需要半年到一年的時間;最後,對於購買人工智慧視頻自學,這種方式主要是看學習者的自律性和學習能力,但一般來說,至少要半年以上,很多人會半途而廢,最終成功學習的基本很少。感興趣的話點擊此處,免費學習一下
想了解更多有關Python人工智慧培訓時間的相關信息,推薦諮詢【達內教育】。作為國內IT培訓的領導品牌,達內的每一名員工都以「幫助每一個學員成就夢想」為己任,也正因為達內人的執著與努力,達內已成功為社會輸送了眾多合格人才,為廣大學子提供更多IT行業高薪機會,同時也為中國IT行業的發展做出了巨大的貢獻。達內IT培訓機構,試聽名額限時搶購。
Python主要學習什麼內容,學完就可以做人工智慧了嗎?
Python是人工智慧的首選語言,應用廣泛、前景好、待遇高、需求量大,學完之後可以從事的崗位有很多,如:人工智慧、網路爬蟲、web開發、機器學習、數據分析、遊戲開發、自動化測試等。
以下是老男孩教育的課程學習大綱,你可以參考一下:
學習Python人工智慧需要什麼基礎
1.高等數學基礎知識
首先,你是零基礎的話,就先將高等數學基礎知識學透,從基礎的數據分析、線性代數及矩陣等等入門,只有基礎有了,才會層層積累,不能沒有邏輯性的看一塊學一塊。
2.有一定的英語水平
試想,如果你連基礎的英語單詞都看不懂,還怎麼寫代碼呢?畢竟代碼都是由英文單片語成的。所以啊,把英文水平提升上來吧,這個非常非常重要的。
3.Python
Python具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕鬆地聯結在一起。比如3D遊戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。這也是人工智慧必備知識。
另外,還要提到的一點是:機器學習屬於人工智慧的一個分支,它是讓機器能具備擺脫對人工指令的依賴,能按照一定的演算法開展自主學習的能力,它的出現才真正讓「人工智慧」不枉智能二字。
千鋒的優勢突出:
1、是業內僅有的一家敢推出「兩周免費試聽,不滿意不繳費」的政策,讓學員更真實地了解學校、了解自己是否適合做開發;
2、0學費入學,工作後分期還款,學員畢業能找到好工作;
3、權威資深師資陣容,業內極具責任心、懂教學、擁有超強技術、有大型項目經驗實戰派講師授課,由業內知名專家及企業技術骨幹組成;
4、自主研發QFTS教學系統,擁有自主知識產權的開發培訓課程體系,講練學相結合,課程內容緊貼當前前沿實用技術和企業實際需求;
5、企業級項目實戰訓練,讓學員參與真實的企業級項目研發,然後讓學員畢業後就能獨立設計開發自己的上線項目。
python人工智慧需要學什麼
有不少同學學習 Python 的原因是對人工智慧感興趣,有志於從事相關行業。今天我們來聊聊這個方向所需要的一些技能。這裡我們主要談論的是編程技能。(推薦學習:Python視頻教程)
如果你打算採用 Python 作為主要開發語言(這也是目前人工智慧領域的主流),那麼 Python 的開發基礎是必須得掌握的,這是一切基於 Python 開發的根基。你得對 Python 的基本語法、數據類型、常見模塊有所了解,能正確使用條件、循環等邏輯,掌握 pst、dict 等數據結構及其常用操作,了解函數、模塊、面向對象的概念和使用等等。
在對此已經熟練之後,你需要學習數據處理相關的 Python 工具庫:
NumPy
NumPy 提供了許多數學計算的數據結構和方法,較 Python 自身的 pst 效率高很多。它提供的 ndarray 大大簡化了矩陣運算。
Pandas
基於 NumPy 實現的數據處理工具。提供了大量數據統計、分析方面的模型和方法。一維的 Series,二維的 DataFrame 和三維的 Panel 是其主要的數據結構。
SciPy
進行科學計算的 Python 工具包,提供了諸如微積分、線性代數、信號處理、傅里葉變換、曲線擬合等眾多方法。
Matplotpb
Python 最基礎的繪圖工具。功能豐富,定製性強,幾乎可滿足日常各類繪圖需求,但配置較複雜。
只要你用 Python 和數據打交道,就繞不開以上這幾個庫,所以務必學習一下。
而在此之後,你就需要根據自己的具體方向,選擇更專業的工具包進行研究和應用。
Python 在人工智慧方面最有名的工具庫主要有:
Scikit-Learn
Scikit-Learn 是用 Python 開發的機器學習庫,其中包含大量機器學習演算法、數據集,是數據挖掘方便的工具。它基於 NumPy、SciPy 和 Matplotpb,可直接通過 pip 安裝。
TensorFlow
TensorFlow 最初由 Google 開發,用於機器學習的研究。TensorFlow 可以在 GPU 或 CPU 上運行,在深度學習領域表現優異。目前無論是在學術研究還是工程應用中都被廣泛使用。但 TensorFlow 相對來說更底層,更多時候我們會使用基於它開發的其他框架。
Theano
Theano 是成熟而穩定的深度學習庫。與 TensorFlow 類似,它是一個比較底層的庫,適合數值計算優化,支持 GPU 編程。有很多基於 Theano 的庫都在利用其數據結構,但對於開發來說,它的介面並不是很友好。
Keras
Keras 是一個高度模塊化的神經網路庫,用 Python 編寫,能夠在 TensorFlow 或 Theano 上運行。它的介面非常簡單易用,大大提升了開發效率。
Caffe
Caffe 在深度學習領域名氣很大。它由伯克利視覺和學習中心(BVLC)和社區貢獻者開發,具有模塊化、高性能的優點,尤其在計算機視覺領域有極大的優勢。Caffe 本身並不是一個 Python 庫,但它提供了 Python 的介面。
PyTorch
Torch 也是一個老牌機器學習庫。Facebook 人工智慧研究所用的框架是 Torch,DeepMind 在被谷歌收購之前用的也是 Torch(後轉為 TensorFlow),足見其能力。但因 Lua 語言導致其不夠大眾。直到它的 Python 實現版本 PyTorch 的出現。
MXNet
亞馬遜 AWS 的默認深度學習引擎,分散式計算是它的特色之一,支持多個 CPU/GPU 訓練網路。
藉助這些強大的工具,你已經可以使用各種經典的模型,對數據集進行訓練和預測。但想成為一名合格的人工智慧開發者,僅僅會調用工具的 API 和調參數是遠遠不夠的。
Python 是人工智慧開發的重要工具,編程是此方向的必備技能。但並不是掌握 Python 就掌握了人工智慧。人工智慧的核心是機器學習(Machine Learning)和深度學習。而它們的基礎是數學(高等數學/線性代數/概率論等),編程是實現手段。
所以你想要進入這個領域,除了編程技能外,數學基礎必不可少,然後還要去了解數據挖掘、機器學習、深度學習等知識。
這不是條幾個月就能速成的路,但堅持下去一定會有所收穫。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python人工智慧需要學什麼的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
原創文章,作者:XTSB,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/139119.html