包含基於python的scikit的詞條

本文目錄一覽:

python數據分析方向的第三方庫是什麼

Python除了有200個標準庫以外,還有10萬個第三方擴展庫,囊括了方方面面。其中做數據分析最常用到的庫有4個:

Numpy

Numpy是Python科學計算的基礎包。它除了為Python提供快速的數組處理能力,還是在演算法和庫之間傳遞數據的容器。對於數值型數據,NumPy數組在存儲和處理數據時要比內置的 Python數據結構高效得多。此外,由低級語言(比如C和Fortran)編寫的庫可以直接操作NumPy 數組中的數據,無需進行任何數據複製工作。因此,許多Python的數值計算工具要麼使用NumPy 數組作為主要的數據結構,要麼可以與NumPy進行無縫交互操作。

Pandas

Pandas提供了快速便捷處理結構化數據的大量數據結構和函數,兼具NumPy高性能的數組計算功能以及電子表格和關係型資料庫(如SQL)靈活的數據處理功能。它提供了複雜精細的索引功能,能更加便捷地完成重塑、切片和切塊、聚合以及選取數據子集等操作。因為數據操作、準備、清洗是數據分析最重要的技能,所以Pandas也是學習的重點。

Matplotlib

Matplotlib是最流行的用於繪製圖表和其它二維數據可視化的Python庫,它非常適合創建出版物上用的圖表。雖然還有其它的Python可視化庫,但Matplotlib卻是使用最廣泛的,並且它和其它生態工具配合也非常完美。

Scikit-learn

Scikit-learn是Python的通用機器學習工具包。它的子模塊包括分類、回歸、聚類、降維、選型、預處理,對於Python成為高效數據科學編程語言起到了關鍵作用。

python數據挖掘工具包有什麼優缺點?

【導讀】python數據挖掘工具包就是scikit-learn,scikit-learn是一個基於NumPy, SciPy,

Matplotlib的開源機器學習工具包,主要涵蓋分類,回歸和聚類演算法,例如SVM,

邏輯回歸,樸素貝葉斯,隨機森林,k-means等演算法,代碼和文檔都非常不錯,在許多Python項目中都有應用。

優點:

1、文檔齊全:官方文檔齊全,更新及時。

2、介面易用:針對所有演算法提供了一致的介面調用規則,不管是KNN、K-Means還是PCA.

3、演算法全面:涵蓋主流機器學習任務的演算法,包括回歸演算法、分類演算法、聚類分析、數據降維處理等。

缺點:

缺點是scikit-learn不支持分散式計算,不適合用來處理超大型數據。

Pandas是一個強大的時間序列數據處理工具包,Pandas是基於Numpy構建的,比Numpy的使用更簡單。最初開發的目的是為了分析財經數據,現在已經廣泛應用在Python數據分析領域中。Pandas,最基礎的數據結構是Series,用它來表達一行數據,可以理解為一維的數組。另一個關鍵的數據結構為DataFrame,它表示的是二維數組

Pandas是基於NumPy和Matplotlib開發的,主要用於數據分析和數據可視化,它的數據結構DataFrame和R語言里的data.frame很像,特別是對於時間序列數據有自己的一套分析機制。有一本書《Python

for Data Analysis》,作者是Pandas的主力開發,依次介紹了iPython, NumPy,

Pandas里的相關功能,數據可視化,數據清洗和加工,時間數據處理等,案例包括金融股票數據挖掘等,相當不錯。

Mlpy是基於NumPy/SciPy的Python機器學習模塊,它是Cython的擴展應用。

關於python數據挖掘工具包的優缺點,就給大家介紹到這裡了,scikit-learn提供了一致的調用介面。它基於Numpy和scipy等Python數值計算庫,提供了高效的演算法實現,所以想要學習python,以上的內容得學會。

python scikit-learn 有什麼演算法

1,前言

很久不發文章,主要是Copy別人的總感覺有些不爽,所以整理些乾貨,希望相互學習吧。不啰嗦,進入主題吧,本文主要時說的為樸素貝葉斯分類演算法。與邏輯回歸,決策樹一樣,是較為廣泛使用的有監督分類演算法,簡單且易於理解(號稱十大數據挖掘演算法中最簡單的演算法)。但其在處理文本分類,郵件分類,拼寫糾錯,中文分詞,統計機器翻譯等自然語言處理範疇較為廣泛使用,或許主要得益於基於概率理論,本文主要為小編從理論理解到實踐的過程記錄。

2,公式推斷

一些貝葉斯定理預習知識:我們知道當事件A和事件B獨立時,P(AB)=P(A)(B),但如果事件不獨立,則P(AB)=P(A)P(B|A)。為兩件事件同時發生時的一般公式,即無論事件A和B是否獨立。當然也可以寫成P(AB)=P(B)P(A|B),表示若要兩件事同事發生,則需要事件B發生後,事件A也要發生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)為先驗概率,P(B|A)為B的後驗概率,P(A|B)為A的後驗概率(在這裡也為似然值),P(A)為A的先驗概率(在這也為歸一化常量)。

由上推導可知,其實樸素貝葉斯法就是在貝葉斯定理基礎上,加上特徵條件獨立假設,對特定輸入的X(樣本,包含N個特徵),求出後驗概率最大值時的類標籤Y(如是否為垃圾郵件),理解起來比邏輯回歸要簡單多,有木有,這也是本演算法優點之一,當然運行起來由於得益於特徵獨立假設,運行速度也更快。

. 參數估計

3,參數估計

由上面推斷出的公式,我們知道其實樸素貝葉斯方法的學習就是對概率P(Y=ck)和P(X(j)=x(j)|Y=ck)的估計。我們可以用極大似然估計法估計上述先驗概率和條件概率。

其中I(x)為指示函數,若括弧內成立,則計1,否則為0。李航的課本直接給出了用極大似然(MLE)估計求出的結果,並沒給推導過程,

我們知道,貝葉斯較為常見的問題為0概率問題。為此,需要平滑處理,主要使用拉普拉斯平滑,如下所示:

K是類的個數,Sj是第j維特徵的最大取值。實際上平滑因子λ=0即為最大似然估計,這時會出現提到的0概率問題;而λ=1則避免了0概率問題,這種方法被稱為拉普拉斯平滑。

4,演算法流程

5,樸素貝葉斯演算法優缺點

優點:樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率

需調參較少,簡單高效,尤其是在文本分類/垃圾文本過濾/情感判別等自然語言處理有廣泛應用。

在樣本量較少情況下,也能獲得較好效果,計算複雜度較小,即使在多分類問題。

無論是類別類輸入還是數值型輸入(默認符合正態分布)都有相應模型可以運用。

缺點:0概率問題,需要平滑處理,通常為拉普拉斯平滑,但加一平滑不一定為效果最好,

樸素貝葉斯有分布獨立的假設前提,生活中較少完全獨立,在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

模型注意點:

1, 大家也知道,很多特徵是連續數值型的,一般選擇使用樸素貝葉斯高斯模型。

2, 為避免0概率事件,記得平滑,簡單一點可以用『拉普拉斯平滑』。先處理處理特徵,把相關特徵去掉,

3, 樸素貝葉斯分類器一般可調參數比較少,需集中精力進行數據的預處理等特徵工程工作。

6,Scikit-learn三大樸素貝葉斯模型

Scikit-learn裡面有3種不同類型的樸素貝葉斯(:

1, 高斯分布型模型:用於classification問題,假定屬性/特徵是服從正態分布的,一般用在數值型特徵。,

2, 多項式型模型:用於離散值模型里。比如文本分類問題裡面我們提到過,我們不光看詞語是否在文本中出現,也得看出現的次數。如果總詞數為n,出現詞數為m的話,說起來有點像擲骰子n次出現m次這個詞的場景。

3, 伯努利模型:這種情況下,就如提到的bag ofwords處理方式一樣,最後得到的特徵只有0(沒出現)和1(出現過)。

7. Scikit-learn演算法實踐

小編通過實現樸素貝葉斯三種模型以及主要分類演算法,對比發現跟SVM,隨機森林,融合演算法相比,貝葉斯差距明顯,但其時間消耗要遠低於上述演算法,以下為主要演算法主要評估指標)。

8. Python代碼

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url =”-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data”

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=”,”)

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print(“\n調用scikit的樸素貝葉斯演算法包GaussianNB “)

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的樸素貝葉斯演算法包MultinomialNB “)

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的樸素貝葉斯演算法包BernoulliNB “)

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的KNeighborsClassifier “)

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的LogisticRegression(penalty=’l2′) “)

model= LogisticRegression(penalty=’l2′)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的RandomForestClassifier(n_estimators=8)  “)

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的tree.DecisionTreeClassifier() “)

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的GradientBoostingClassifier(n_estimators=200) “)

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(“\n調用scikit的SVC(kernel=’rbf’, probability=True) “)

model= SVC(kernel=’rbf’, probability=True)

start_time= time.time()

model.fit(X,y)

print(‘training took %fs!’ % (time.time() – start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

“””

# 預處理代碼集錦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特徵相關性分析

##計算每行每列數據的缺失值個數

defnum_missing(x):

return sum(x.isnull())

print(“Missing values per column:”)

print(df.apply(num_missing, axis=0)) #axis=0代表函數應用於每一列

print(“\nMissing values per row:”)

print(df.apply(num_missing, axis=1).head()) #axis=1代表函數應用於每一行”””

原創文章,作者:簡單一點,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/130823.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
簡單一點的頭像簡單一點
上一篇 2024-10-03 23:27
下一篇 2024-10-03 23:27

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python字元串寬度不限制怎麼打代碼

    本文將為大家詳細介紹Python字元串寬度不限制時如何打代碼的幾個方面。 一、保持代碼風格的統一 在Python字元串寬度不限制的情況下,我們可以寫出很長很長的一行代碼。但是,為了…

    編程 2025-04-29
  • 蝴蝶優化演算法Python版

    蝴蝶優化演算法是一種基於仿生學的優化演算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化演算法Python版…

    編程 2025-04-29
  • Python讀取CSV數據畫散點圖

    本文將從以下方面詳細闡述Python讀取CSV文件並畫出散點圖的方法: 一、CSV文件介紹 CSV(Comma-Separated Values)即逗號分隔值,是一種存儲表格數據的…

    編程 2025-04-29
  • Python實現畫筆方向改變

    本文將介紹如何在Python中實現畫筆方向改變,讓畫筆以中心為軸旋轉。 一、Tkinter庫概述 Tkinter是Python自帶的GUI庫,可用於創建各種GUI應用程序。在Pyt…

    編程 2025-04-29
  • 運維Python和GO應用實踐指南

    本文將從多個角度詳細闡述運維Python和GO的實際應用,包括監控、管理、自動化、部署、持續集成等方面。 一、監控 運維中的監控是保證系統穩定性的重要手段。Python和GO都有強…

    編程 2025-04-29

發表回復

登錄後才能評論