本文目錄一覽:
- 1、python數據類型都有哪些
- 2、python的數據類型有哪些?
- 3、python自帶及pandas、numpy數據結構(一)
- 4、Python怎麼實現非線性的擬合
- 5、PYTHON的數據結構和演算法介紹
- 6、利用Python進行數據分析筆記:3.1數據結構
python數據類型都有哪些
數據類型是每種編程語言必備的屬性,只有給數據賦予明確的數據類型,計算機才能對數據進行處理運算,因此,使用正確的數據類型是十分有必要的,以下是Python編程常用的數據類型:
一、數字型
Python數字類型主要包括int(整型)、long(長整型)和float(浮點型),但是在Python3中就不再有long類型了。
1、int(整型)
在32位機器上,整數的位數是32位,取值範圍是-231~231-1,即-2147483648~214748364;在64位系統上,整數的位數為64位,取值範圍為-263~263-1,即9223372036854775808~9223372036854775807。
2、long(長整型)
Python長整型沒有指定位寬,但是由於機器內存有限,使用長的長整數數值也不可能無限大。
3、float(浮點型)
浮點型也就是帶有小數點的數,其精度和機器有關。
4、complex(複數)
Python還支持複數,複數由實數部分和虛數部分構成,可以用 a + bj,或者 complex(a,b) 表示, 複數的實部 a 和虛部 b
都是浮點型。
二、字元串
在Python中,加了引號的字元都被認為是字元串,其聲明有三種方式,分別是:單引號、雙引號和三引號;Python中的字元串有兩種數據類型,分別是str類型和unicode類型,str類型採用的ASCII編碼,無法表示中文,unicode類型採用unicode編碼,能夠表示任意字元,包括中文和其他語言。
三、布爾型
和其他編程語言一樣,Python布爾類型也是用於邏輯運算,有兩個值:True(真)和False(假)。
四、列表
列表是Python中使用最頻繁的數據類型,集合中可以放任何數據類型,可對集合進行創建、查找、切片、增加、修改、刪除、循環和排序操作。
五、元組
元組和列表一樣,也是一種序列,與列表不同的是,元組是不可修改的,元組用」()」標識,內部元素用逗號隔開。
六、字典
字典是一種鍵值對的集合,是除列表以外Python之中最靈活的內置數據結構類型,列表是有序的對象集合,字典是無序的對象集合。
七、集合
集合是一個無序的、不重複的數據組合,它的主要作用有兩個,分別是去重和關係測試。
python的數據類型有哪些?
1. 數字類型
Python數字類型主要包括int(整型)、long(長整型)和float(浮點型),但是在Python3中就不再有long類型了。
int(整型)
在32位機器上,整數的位數是32位,取值範圍是-231~231-1,即-2147483648~214748364;在64位系統上,整數的位數為64位,取值範圍為-263~263-1,即9223372036854775808~9223372036854775807。
long(長整型)
Python長整型沒有指定位寬,但是由於機器內存有限,使用長的長整數數值也不可能無限大。
float(浮點型)
浮點型也就是帶有小數點的數,其精度和機器有關。
complex(複數)
Python還支持複數,複數由實數部分和虛數部分構成,可以用 a + bj,或者 complex(a,b) 表示, 複數的實部 a 和虛部 b 都是浮點型。
2. 字元串
在Python中,加了引號的字元都被認為是字元串,其聲明有三種方式,分別是:單引號、雙引號和三引號;Python中的字元串有兩種數據類型,分別是str類型和unicode類型,str類型採用的ASCII編碼,無法表示中文,unicode類型採用unicode編碼,能夠表示任意字元,包括中文和其他語言。
3. 布爾型
和其他編程語言一樣,Python布爾類型也是用於邏輯運算,有兩個值:True(真)和False(假)。
4. 列表
列表是Python中使用最頻繁的數據類型,集合中可以放任何數據類型,可對集合進行創建、查找、切片、增加、修改、刪除、循環和排序操作。
5. 元組
元組和列表一樣,也是一種序列,與列表不同的是,元組是不可修改的,元組用」()」標識,內部元素用逗號隔開。
6. 字典
字典是一種鍵值對的集合,是除列表以外Python之中最靈活的內置數據結構類型,列表是有序的對象集合,字典是無序的對象集合。
7. 集合
集合是一個無序的、不重複的數據組合,它的主要作用有兩個,分別是去重和關係測試。
python自帶及pandas、numpy數據結構(一)
1.python自帶數據結構:序列(如list)、映射(如字典)、集合(set)。
以下只介紹序列中的list:
創建list:
list1 = []
list1 = [1,2,3,4,5,6,7,8,9] #逗號隔開
list2 = [[1,2],[3,4],[5,6],[7,8]] #list2長度(len(list2))為2,list2[0] = [1,2]
liststring = list(「thisisalist」) #只用於創建字元串列表
索引list:
e = list1[0] #下標從零開始,用中括弧
分片list:
es = list1[0:3]
es = list1[0:9:2] #步長在第二個冒號後
list拼接(list1.append(obj)、加運算及乘運算):
list長度:
list每個元素乘一個數值:
list2 = numpy.dot(list2,2)
list類似矩陣相乘(每個元素對應相乘取和):
list3 = numpy.dot(list1,list1)
#要求相乘的兩個list長度相同
list3 = numpy.dot(list2,list22)
#要求numpy.shape(list2)和numpy.shape(list22)滿足「左行等於右列」的矩陣相乘條件,相乘結果numpy.shape(list3)滿足「左列右行」
2.numpy數據結構:
Array:
產生array:
data=np.array([[1, 9, 6], [2, 8, 5], [3, 7, 4]])
data=np.array(list1)
data1 = np.zeros(5) #data1.shape = (5,),5列
data1 = np.eye(5)
索引array:
datacut = data[0,2] #取第零行第二列,此處是6
切片array:
datacut = data[0:2,2] # array([6, 5])
array長度:
data.shape
data.size
np.shape(data)
np.size(data)
len(data)
array拼接:
#括弧內也有一個括弧(中括弧或者小括弧)!
d = np.concatenate((data,data))
d = np.concatenate((data,data),axis = 1) #對應行拼接
array加法:逐個相加
array乘法:
d = data data #逐個相乘
d = np.dot(data,data) #矩陣相乘
d = data 3 #每個元素乘3
d = np.dot(data,3) #每個元素乘3
array矩陣運算:
取逆 : np.linalg.inv(data)
轉置:data.T
所有元素求和 : np.sum(data)
生成隨機數:np.random.normal(loc=0, scale=10, size=None)
生成標準正態分布隨機數組:np.random.normal(size=(4,4))
生成二維隨機數組:
np.random.multivariate_normal([0,0],np.eye(2))
生成範圍在0到1之間的隨機矩陣(M,N):
np.random.randint(0,2,(M,N))
Matrix:
創建matrix:
mat1 = np.mat([[1, 2, 3], [4, 5, 6]])
mat1 = np.mat(list)
mat1 = np.mat(data)
matrix是二維的,所有+,-,*都是矩陣操作。
matrix索引和分列:
mat1[0:2,1]
matrix轉置:
np.transpose(mat1)
mat1.transpose()
matrix拼接:
np.concatenate([mat1,mat1])
np.concatenate([mat1,mat1],axis = 1)
numpy數據結構總結:對於numpy中的數據結構的操作方法基本相同:
創建:np.mat(list),np.array(list)
矩陣乘:np.dot(x,y)
轉置:x.T or np.transpose(x)
拼接:np.concatenate([x,y],axis = 1)
索引:mat[0:1,4],ary[0:1,4]
3.pandas數據結構:
Series:
創建series:
s = pd.Series([[1,2,3],[4,5,6]],index = [『a』,『b』])
索引series:
s1 = s[『b』]
拼接series:
pd.concat([s1,s1],axis = 1) #也可使用s.append(s)
DataFrame:
創建DaraFrame:
df = pd.DataFrame([[1,2,3],[1,2,3]],index = [‘a’,’b’],columns = [‘x’,’y’,’z’])
df取某一列:
dfc1 =df.x
dfc1 = df[『x』]
dfc2 = df.iloc[:,0] #用.iloc方括弧里是數字而不是column名!
dfc2 = df.iloc[:,0:3]
df取某一行:
dfr1 = df.iloc[0]
df1 = df.iloc[0:2]
df1 = df[0:2] #這種方法只能用於取一個區間
df取某個值:
dfc2 = df.iloc[0,0]
dfc2 = df.iloc[0:2,0:3]
Python怎麼實現非線性的擬合
import matplotlib.pyplot as ptimport numpy as npfrom scipy.optimize import leastsqfrom pylab import *time = []counts = []for i in open(‘/some/folder/to/file.txt’, ‘r’):
segs = i.split()
time.append(float(segs[0]))
counts.append(segs[1])time_array = arange(len(time), dtype=float)counts_array = arange(len(counts))time_array[0:] = time
counts_array[0:] = counts
def model(time_array0, coeffs0):
a = coeffs0[0] + coeffs0[1] * np.exp( – ((time_array0-coeffs0[2])/coeffs0[3])**2 )
b = coeffs0[4] + coeffs0[5] * np.exp( – ((time_array0-coeffs0[6])/coeffs0[7])**2 )
c = a+b return c
PYTHON的數據結構和演算法介紹
當你聽到數據結構時,你會想到什麼?
數據結構是根據類型組織和分組數據的容器。它們基於可變性和順序而不同。可變性是指創建後改變對象的能力。我們有兩種類型的數據結構,內置數據結構和用戶定義的數據結構。
什麼是數據演算法-是由計算機執行的一系列步驟,接受輸入並將其轉換為目標輸出。
列表是用方括弧定義的,包含用逗號分隔的數據。該列表是可變的和有序的。它可以包含不同數據類型的混合。
months=[‘january’,’february’,’march’,’april’,’may’,’june’,’july’,’august’,’september’,’october’,’november’,’december’]
print(months[0])#print the element with index 0
print(months[0:7])#all the elements from index 0 to 6
months[0]=’birthday #exchange the value in index 0 with the word birthday
print(months)
元組是另一種容器。它是不可變有序元素序列的數據類型。不可變的,因為你不能從元組中添加和刪除元素,或者就地排序。
length, width, height =9,3,1 #We can assign multiple variables in one shot
print(“The dimensions are {} * {} * {}”.format(length, width, height))
一組
集合是唯一元素的可變且無序的集合。它可以讓我們快速地從列表中刪除重複項。
numbers=[1,2,3,4,6,3,3]
unique_nums = set(numbers)
print(unique_nums)
models ={‘declan’,’gift’,’jabali’,’viola’,’kinya’,’nick’,betty’ }
print(‘davis’ in models)#check if there is turner in the set models
models.add(‘davis’)
print(model.pop())remove the last item#
字典
字典是可變和無序的數據結構。它允許存儲一對項目(即鍵和值)
下面的例子顯示了將容器包含到其他容器中來創建複合數據結構的可能性。
* 用戶定義的數據結構*
使用數組的堆棧堆棧是一種線性數據結構,其中元素按順序排列。它遵循L.I.F.O的機制,意思是後進先出。因此,最後插入的元素將作為第一個元素被刪除。這些操作是:
溢出情況——當我們試圖在一個已經有最大元素的堆棧中再放一個元素時,就會出現這種情況。
下溢情況——當我們試圖從一個空堆棧中刪除一個元素時,就會出現這種情況。
隊列是一種線性數據結構,其中的元素按順序排列。它遵循先進先出的F.I.F.O機制。
描述隊列特徵的方面
兩端:
前端-指向起始元素。
指向最後一個元素。
有兩種操作:
樹用於定義層次結構。它從根節點開始,再往下,最後的節點稱為子節點。
鏈表
它是具有一系列連接節點的線性數據。每個節點存儲數據並顯示到下一個節點的路由。它們用來實現撤銷功能和動態內存分配。
圖表
這是一種數據結構,它收集了具有連接到其他節點的數據的節點。
它包括:
演算法
在演算法方面,我不會講得太深,只是陳述方法和類型:
原文:
利用Python進行數據分析筆記:3.1數據結構
元組是一種固定長度、不可變的Python對象序列。創建元組最簡單的辦法是用逗號分隔序列值:
tuple 函數將任意序列或迭代器轉換為元組:
中括弧 [] 可以獲取元組的元素, Python中序列索引從0開始 :
元組一旦創建,各個位置上的對象是無法被修改的,如果元組的一個對象是可變的,例如列表,你可以在它內部進行修改:
可以使用 + 號連接元組來生成更長的元組:
元組乘以整數,則會和列表一樣,生成含有多份拷貝的元組:
將元組型的表達式賦值給變數,Python會對等號右邊的值進行拆包:
拆包的一個常用場景就是遍曆元組或列表組成的序列:
*rest 用於在函數調用時獲取任意長度的位置參數列表:
count 用於計量某個數值在元組中出現的次數:
列表的長度可變,內容可以修改。可以使用 [] 或者 list 類型函數來定義列表:
append 方法將元素添加到列表尾部:
insert 方法可以將元素插入到指定列表位置:
( 插入位置範圍在0到列表長度之間 )
pop 是 insert 的反操作,將特定位置的元素移除並返回:
remove 方法會定位第一個符合要求的值並移除它:
in 關鍵字可以檢查一個值是否在列表中;
not in 表示不在:
+ 號可以連接兩個列表:
extend 方法可以向該列表添加多個元素:
使用 extend 將元素添加到已經存在的列表是更好的方式,比 + 快。
sort 方法可以對列表進行排序:
key 可以傳遞一個用於生成排序值的函數,例如通過字元串的長度進行排序:
bisect.bisect 找到元素應當被插入的位置,返回位置信息
bisect.insort 將元素插入到已排序列表的相應位置保持序列排序
bisect 模塊的函數並不會檢查列表是否已經排序,因此對未排序列表使用bisect不會報錯,但是可能導致不正確結果
切片符號可以對大多數序列類型選取子集,基本形式是 [start:stop]
起始位置start索引包含,結束位置stop索引不包含
切片還可以將序列賦值給變數:
start和stop可以省略,默認傳入起始位置或結束位置,負索引可以從序列尾部進行索引:
步進值 step 可以在第二個冒號後面使用, 意思是每隔多少個數取一個值:
對列表或元組進行翻轉時,一種很聰明的用法時向步進值傳值-1:
dict(字典)可能是Python內建數據結構中最重要的,它更為常用的名字是 哈希表 或者 關聯數組 。
字典是鍵值對集合,其中鍵和值都是Python對象。
{} 是創建字典的一種方式,字典中用逗號將鍵值對分隔:
你可以訪問、插入或設置字典中的元素,:
in 檢查字典是否含有一個鍵:
del 或 pop 方法刪除值, pop 方法會在刪除的同時返回被刪的值,並刪除鍵:
update 方法將兩個字典合併:
update方法改變了字典元素位置,對於字典中已經存在的鍵,如果傳給update方法的數據也含有相同的鍵,則它的值將會被覆蓋。
字典的值可以是任何Python對象,但鍵必須是不可變的對象,比如標量類型(整數、浮點數、字元串)或元組(且元組內對象也必須是不可變對象)。
通過 hash 函數可以檢查一個對象是否可以哈希化(即是否可以用作字典的鍵):
集合是一種無序且元素唯一的容器。
set 函數或者是用字面值集與大括弧,創建集合:
union 方法或 | 二元操作符獲得兩個集合的聯合即兩個集合中不同元素的並集:
intersection 方法或 操作符獲得交集即兩個集合中同時包含的元素:
常用的集合方法列表:
和字典類似,集合的元素必須是不可變的。如果想要包含列表型的元素,必須先轉換為元組:
原創文章,作者:D95OW,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/130074.html