- 1、python, 如何在subplot在總的圖畫上面加title?
- 2、用Python畫圖
- 3、Python實操:手把手教你用Matplotlib把數據畫出來
python, 在subplot在總的圖畫上面加title的方法:畫完子圖在下面加plt.suptitle()
Python , 是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python是純粹的自由軟體, 源代碼和解釋器CPython遵循 GPL(GNU General Public License)協議 ,Python語法簡潔清晰,特色之一是強制用空白符(white space)作為語句縮進。
Python具有豐富和強大的庫,它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕鬆地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D遊戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫,需要注意的是在您使用擴展類庫時可能需要考慮平台問題,某些可能不提供跨平台的實現。
subplot是MATLAB中的函數,是將多個圖畫到一個平面上的工具,在matlab的命令窗口中輸入doc subplot或者help subplot即可獲得該函數的幫助信息。
TITLE 元素僅可在 HEAD 元素內使用,位於 TITLE 開閉標籤之內的文本都會在瀏覽器的標題欄和 Microsoft Windows 的任務欄上顯示,對於 Web 頁,「Internet Explorer」會被自動追加到標題後,而在 HTML 應用程序(HTA)中,僅會顯示指定的標題。
今天開始琢磨用Python畫圖,沒使用之前是一臉懵的,我使用的開發環境是Pycharm,這個輸出的是一行行命令,這個圖畫在哪裡呢?
搜索之後發現,它會彈出一個對話框,然後就開始畫了,比如下圖
第一個常用的庫是Turtle,它是Python語言中一個很流行的繪製圖像的函數庫,這個詞的意思就是烏龜,你可以想像下一個小烏龜在一個x和y軸的平面坐標系裡,從原點開始根據指令控制,爬行出來就是繪製的圖形了。
它最常用的指令就是旋轉和移動,比如畫個圓,就是繞著圓心移動;再比如上圖這個怎麼畫呢,其實主要就兩個命令:
turtle.forward(200)
turtle.left(170)
第一個命令是移動200個單位並畫出來軌跡
第二個命令是畫筆順時針轉170度,注意此時並沒有移動,只是轉角度
然後呢? 循環重複就畫出來這個圖了
好玩吧。
有需要仔細研究的可以看下這篇文章 ,這個牛人最後用這個庫畫個移動的鐘錶,太贊了。
Turtle雖好玩,但是我想要的是我給定數據,然後讓它畫圖,這裡就找到另一個常用的畫圖的庫了。
Matplotlib是python最著名的繪圖庫,它提供了一整套和matlab相似的命令API,十分適合互動式地行製圖。其中,matplotlib的pyplot模塊一般是最常用的,可以方便用戶快速繪製二維圖表。
使用起來也挺簡單,
首先import matplotlib.pyplot as plt 導入畫圖的圖。
然後給定x和y,用這個命令plt.plot(x, y)就能畫圖了,接著用plt.show()就可以把圖形展示出來。
接著就是各種完善,比如加標題,設定x軸和y軸標籤,範圍,顏色,網格等等,在 這篇文章里介紹的很詳細。
現在互聯網的好處就是你需要什麼內容,基本上都能搜索出來,而且還是免費的。
我為什麼要研究這個呢?當然是為了用,比如我把比特幣的曲線自己畫出來可好?
假設現在有個數據csv文件,一列是日期,另一列是比特幣的價格,那用這個命令畫下:
這兩列數據讀到pandas中,日期為df[‘time’]列,比特幣價格為df[‘ini’],那我只要使用如下命令
plt.plot(df[‘time’], df[‘ini’])
plt.show()
就能得到如下圖:
自己畫的是不是很香,哈哈!
然後呢,我在上篇文章 中介紹過求Ahr999指數,那可不可以也放到這張圖中呢?不就是加一條命令嘛
plt.plot(df[‘time’], df[‘Ahr999’])
圖形如下:
但是,Ahr999指數怎麼就一條線不動啊, 原來兩個Y軸不一致,顯示出來太怪了,需要用多Y軸,問題來了。
繼續谷歌一下,把第二個Y軸放右邊就行了,不過呢得使用多圖,重新繪製
fig = plt.figure() # 多圖
ax1 = fig.add_subplot(111)
ax1.plot(df[‘time’], df[‘ini’], label=”BTC price”) # 繪製第一個圖比特幣價格
ax1.set_ylabel(‘BTC price’) # 加上標籤
# 第二個直接對稱就行了
ax2 = ax1.twinx()# 在右邊增加一個Y軸
ax2.plot(df[‘time’], df[‘Ahr999’], ‘r’, label=”ahr999″) # 繪製第二個圖Ahr999指數,紅色
ax2.set_ylim([0, 50])# 設定第二個Y軸範圍
ax2.set_ylabel(‘ahr999’)
plt.grid(color=”k”, linestyle=”:”)# 網格
fig.legend(loc=”center”)#圖例
plt.show()
跑起來看看效果,雖然丑了點,但終於跑通了。
這樣就可以把所有指數都繪製到一張圖中,等等,三個甚至多個Y軸怎麼加?這又是一個問題,留給愛思考愛學習的你。
有了自己的數據,建立自己的各個指數,然後再放到圖形界面中,同時針對異常情況再自動進行提醒,比如要抄底了,要賣出了,用程序做出自己的晴雨表。
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉載請聯繫華章 科技
如果已安裝Anaconda Python版本,就已經安裝好了可以使用的 Matplotlib。否則,可能要訪問官網並從中獲取安裝說明:
正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:
在本書中,plt介面會被頻繁使用。
讓我們創建第一個繪圖。
假設想要畫出正弦函數sin(x)的線性圖。得到函數在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數來在x坐標軸上創建一個從0到10的線性空間,以及100個採樣點:
可以使用 NumPy 中的sin函數得到所有x點的值,並通過調用plt中的plot函數把結果畫出來:
你親自嘗試了嗎?發生了什麼嗎?有沒有什麼東西出現?
實際情況是,取決於你在哪裡運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:
在腳本末尾調用這個函數,你的繪圖就會出現!
2. 從 IPython shell 中繪圖
這實際上是互動式地執行Matplotlib最方便的方式。為了讓繪圖出現,需要在啟動 IPython 後使用所謂的%matplotlib魔法命令。
接下來,無須每次調用plt.show()函數,所有的繪圖將會自動出現。
3. 從 Jupyter Notebook 中繪圖
如果你是從基於瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結果:
如果想要把繪圖保存下來留作以後使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件後綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最後一個測試,讓我們對外部數據集進行可視化,比如scikit-learn中的數字數據集。
為此,需要三個可視化工具:
那麼開始引入這些包吧:
第一步是載入實際數據:
如果沒記錯的話,digits應該有兩個不同的數據域:data域包含了真正的圖像數據,target域包含了圖像的標籤。相對於相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然後按Tab鍵:digits.TAB,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區分。
兩種情況中,第一維對應的都是數據集中的圖像數量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪製出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數組切片從數據集中獲取一幅圖像:
這裡是從1797個元素的數組中獲取了它的第一行數據,這行數據對應的是8×8=64個像素。下面就可以使用plt中的imshow函數來繪製這幅圖像:
上面的命令得到下面的輸出:
此外,這裡也使用cmap參數指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最後,可以使用plt的subplot函數繪製全部數字的樣例。subplot函數與MATLAB中的函數一樣,需要指定行數、列數以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環在數據集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結果:
關於作者:Michael Beyeler,華盛頓大學神經工程和數據科學專業的博士後,主攻仿生視覺計算模型,用以為盲人植入人工視網膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬於神經科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。
本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經出版方授權發布。
原創文章,作者:IVHOE,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/127177.html