- 1、將R語言寫的一段代碼用Python寫出來
- 2、求助,R語言在python中調用問題
- 3、python與r語言哪個好
- 4、R語言與Python是什麼?
哈哈哈哈。python除了去SciPy這類科學計算的包外,還真不好跟R的計算功能直接類比和改寫。別人R中一句話調用了包中的數學函數,你python憑什麼很容易的改寫出來?
你使用的方法沒有問題。r.mydose()調用後返回的東西不是報錯,是因為mydose這個function返回值就是NULL,所以rpy就相應的返回了rpy2.rinterface.NULL,沒有問題。以上是我的測試nofunc是一個什麼也不做的functionhello是輸出Hello world的function
Python比較好點,Python用的人比較多。
ython和R這2個都擁有龐大的用戶支持。2017年的調查顯示,近45%的數據科學家使用Python作為主要的編程語言,另一方面,11.2%的數據科學家使用R語言。
python與r語言區別如下:
Python的優勢:
1. Python 包含比R更豐富的數據結構來實現數據更精準的訪問和內存控制,大多數深度學習研究都是用python來完成的。
2. Python與R相比速度要快。Python可以直接處理上G的數據;R不行,R分析數據時需要先通過資料庫把大數據轉化為小數據(通過groupby)才能交給R做分析,因此R不可能直接分析行為詳單,只能分析統計結果。
3. Python優於R的另一個優勢是將模型部署到軟體的其他部分。Python是一種通用性語言,用python編寫應用程序,包含基於Python的模型的過程是無縫的。
4. Python是一套比較平衡的語言,各方面都可以,無論是對其他語言的調用,和數據源的連接、讀取,對系統的操作,還是正則表達和文字處理,Python都有著明顯優勢,尤其在計算機編程、網路爬蟲上更有優勢。
R語言的優勢:
1. R在統計分析上是一種更高效的獨立數據分析工具。在R中進行大量的統計建模研究,有更廣泛的模型類可供選擇,如果你對建模有疑問,R是最合適的。
2. R的另外一個技巧就是使用Shiny輕鬆地創建儀錶盤,Python也有Dash作為替代,但是不夠成熟。
3. R的函數是為統計學家開發的,因此它具有特定領域優勢,比如數據可視化的強大特性,由R Studio的首席科學家Hadley Wickham創建的ggplot2 如今是R歷史上最受歡迎的數據可視化軟體包之一。
ggplot2允許用戶在更高的抽象級別自定義繪圖組件。我個人非常喜歡ggplot2的各種功能和自定義。ggplot2提供的50多種圖像適用於各種行業。
都是程序計算機語言。
Python入門簡單,而R則相對比較難一些。R做文本挖掘現在還有點弱,當然優點在於函數都給你寫好了,你只需要知道參數的形式就行了,有時候即使參數形式不對,R也能”智能地」幫你適應。這種簡單的軟體適合想要專註於業務的人。
Python幾乎都可以做,函數比R多,比R快。它是一門語言,R更像是一種軟體,所以python更能開發出flexible的演算法。
相關介紹
Python和R本身在數據分析和數據挖掘方面都有比較專業和全面的模塊,很多常用的功能,比如矩陣運算、向量運算等都有比較高級的用法,所以使用起來產出比大。
這兩門語言對於平台方面適用性比較廣,linux、window都可以使用,並且代碼可移植性還算不錯的。對於學數理統計的人來說,應該大多用過MATLAB以及mintab等工具,Python和R比較貼近這些常用的數學工具,使用起來有種親切感。
原創文章,作者:GJWTC,如若轉載,請註明出處:https://www.506064.com/zh-tw/n/127087.html