Oliver Assurance是一家基於人工智能技術的保險解決方案提供商。其旨在通過技術手段,讓保險行業更加透明、高效、可靠。下面我們將從多個方面對Oliver Assurance做詳細的闡述。
一、智能核保
Oliver Assurance提供了一套完整的智能核保系統,該系統依託於深度學習、自然語言處理等技術,能夠自動化完成保單風險評估、相應費率計算等一系列核保過程。傳統的人工核保可能需要耗費較長時間,且會受到人員素質差異等因素的影響,而智能核保的技術手段則能夠降低傳統人工核保流程中的不確定因素。除了能減少核保時間成本外,還可以提高其準確性和效率。其代碼示例如下:
def riskAssessment(premium, factors): riskFactor = 1 # the default value of risk factor for key, value in factors.items(): if key == 'age': if value < 18: riskFactor *= 1.5 # age under 18 increases risk factor elif value > 60: riskFactor *= 0.5 # age over 60 decreases risk factor # other factors for risk assessment # ... return round(premium * riskFactor, 2)
二、智能理賠
Oliver Assurance也提供了智能理賠解決方案,能夠實現自動化理賠流程。這裡的智能指的是,系統能夠在第一時間對理賠申請進行審核,將符合條件的案件及時處理。而且對於那些可以自動確定理賠金額的案件,系統還能夠實現自動核算完成理賠金額的計算。其代碼示例如下:
def autoAdjustClaim(claim, history): amount = history[-1]['amount'] # the previous amount of this claimant if claim['accident_date'] - history[-1]['accident_date'] < timedelta(days=365): # adjust based on the previous amount and new severity severity = claim['severity'] diff = severity - history[-1]['severity'] if diff > 0: amount += diff * 500 # adjust by $500 per severity point amount = round(amount, 2) else: # adjust based on the average amount of previous claims avgAmount = sum([h['amount'] for h in history]) / len(history) amount *= (1 + (claim['severity'] - 3) * 0.1) amount = round(amount, 2) return amount
三、智能風險管理
Oliver Assurance還提供了一套智能風險管理解決方案,通過實時監控風險數據、模擬風險預警、應急響應等多個方面,為保險公司提供準確優化的風險控制策略。其能夠幫助公司有效降低風險,保證資產安全。其代碼示例如下:
def riskMonitor(assetList): for asset in assetList: # monitor the asset and calculate its risk level if asset['type'] == 'realty': # monitor the real estate asset riskLevel = calculateRealtyRisk(asset) if riskLevel > 7: # send emergency response alert sendAlert('Real Estate Risk', 'The risk of asset %s is high.' % asset['name']) elif asset['type'] == 'stock': # monitor the stock asset riskLevel = calculateStockRisk(asset) if riskLevel > 8: # send emergency response alert sendAlert('Stock Risk', 'The risk of asset %s is extremely high.' % asset['name']) # other asset types for risk monitoring # ...
四、智能客服
Oliver Assurance提供了一套完善的智能客服解決方案,該方案採用了自然語言處理技術,在不影響服務質量的前提下,能夠幫助保險公司解決客戶服務中的瓶頸問題,保證客戶服務響應及時、準確。其代碼示例如下:
def chatbot(msg): response = '' # process the message from customer intent, entity = extractIntentEntity(msg) # determine the intent and generate response accordingly if intent == 'policy_search': policy = searchPolicy(entity) response = 'The policy you are searching for is %s.' % policy elif intent == 'policy_apply': risk = assessRisk(entity) if risk < 0.7: response = 'Your application is approved.' else: response = 'Your application is rejected due to the high risk level.' # other intents for customer inquiries # ... return response
以上是對Oliver Assurance多個方面的介紹,該公司的技術手段不僅能夠解決保險行業的各種瓶頸問題,也為消費者帶來了更好的購買體驗。
原創文章,作者:YBWEF,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/374863.html