一、什麼是全局路徑規劃
全局路徑規劃是指在給定的地圖中,通過使用搜索算法和路徑規划算法,尋找從起點到目標點的最佳路徑,並將其轉換為機械人可以遵循的指令序列,使得機械人能夠在給定地圖上避開障礙物,沿最優路徑到達目標點。
全局路徑規劃通常用於自動駕駛車輛、無人機及移動機械人等領域,在實際應用中起到了重要的作用。
二、全局路徑規劃的算法
1. Dijkstra算法
Dijkstra算法是一種常見的最短路徑搜索算法,適用於無權圖或者權值都為正數的圖。它以起點為中心向外層層擴展,直到擴展到目標點位置。
def dijkstra(graph, start, end): #初始化 inf = float('inf') distance = {vertex: inf for vertex in graph} path = {vertex: [] for vertex in graph} visited = [] queue = [start] distance[start] = 0 #搜索 while queue: current = queue.pop(0) visited.append(current) if current == end: break for neighbor in graph[current]: if neighbor not in visited: new_distance = distance[current] + graph[current][neighbor] if new_distance < distance[neighbor]: distance[neighbor] = new_distance path[neighbor] = path[current] + [current] queue.append(neighbor) return path[end] + [end]
2. A*算法
A*算法結合了Dijkstra算法和啟發式函數(Heuristic Function)的思想,在搜索過程中通過評估函數評估某個節點是否為最優解。它適用於連續空間的最短路徑規劃,具有搜索速度快、路徑優秀等優點。
def heuristic(node1, node2): #曼哈頓距離 return abs(node1.x - node2.x) + abs(node1.y - node2.y) def a_star(start, end): #初始化 open_list = [start] closed_list = [] start.g = 0 start.f = start.h = heuristic(start, end) #搜索 while open_list: current = min(open_list, key = lambda x:x.f) if current == end: path = [] while current.parent != None: path.append(current) current = current.parent path.append(start) path.reverse() return path open_list.remove(current) closed_list.append(current) for neighbor in current.adjacent: if neighbor in closed_list: continue if neighbor not in open_list: neighbor.g = current.g + heuristic(current, neighbor) neighbor.h = heuristic(neighbor, end) neighbor.f = neighbor.g + neighbor.h neighbor.parent = current open_list.append(neighbor) else: new_g = current.g + heuristic(current, neighbor) if neighbor.g > new_g: neighbor.g = new_g neighbor.f = neighbor.g + neighbor.h neighbor.parent = current return None
三、實例
下面是一個簡單的例子,給定一個地圖和起點終點,使用A*算法尋找最優路徑。
class Node: def __init__(self, value, x, y): self.value = value self.x = x self.y = y self.adjacent = [] self.parent = None self.f = 0 self.g = 0 self.h = 0 def create_graph(grid): height = len(grid) width = len(grid[0]) graph = {} for i in range(height): for j in range(width): node = Node(grid[i][j], i, j) if i+1 < height and grid[i+1][j] != "#": node.adjacent.append(Node(grid[i+1][j], i+1, j)) if j+1 < width and grid[i][j+1] != "#": node.adjacent.append(Node(grid[i][j+1], i, j+1)) graph[(i, j)] = node return graph grid = [ ["S", 0, 0, "#"], [0, "#", 0, "#"], ["#", 0, 0, 0], ["#", "#", 0, "E"] ] graph = create_graph(grid) start = graph[(0, 0)] end = graph[(3, 3)] print(a_star(start, end))
四、總結
全局路徑規劃是自動駕駛車輛、無人機等移動機械人領域必備的技術之一,Dijkstra算法、A*算法是其中常用的兩種算法,它們都可以用來尋找起點到目標點的最短路徑。對於不同場景可以根據需要選擇不同的算法進行路徑規劃。
原創文章,作者:DVDOR,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/332598.html