python爬蟲搭建教程,python編寫爬蟲程序

本文目錄一覽:

爬蟲python入門難學嗎

爬蟲是大家公認的入門Python最好方式,沒有之一。雖然Python有很多應用的方向,但爬蟲對於新手小白而言更友好,原理也更簡單,幾行代碼就能實現基本的爬蟲,零基礎也能快速入門,讓新手小白體會更大的成就感。因此小編整理了新手小白必看的Python爬蟲學習路線全面指導,希望可以幫到大家。

1.學習 Python 包並實現基本的爬蟲過程

大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下。當然如果你需要爬取異步加載的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化。

2.了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入數據庫中。開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。當然你可能發現爬回來的數據並不是乾淨的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更乾淨的數據。

3.學習scrapy,搭建工程化爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常複雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備Python爬蟲工程師的思維了。

4.學習數據庫知識,應對大規模數據存儲與提取

Python客棧送紅包、紙質書

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種數據庫是必須的,學習目前比較主流的 MongoDB 就OK。MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。因為這裡要用到的數據庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

5.掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態加載等等。遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。

6.分佈式爬蟲,實現大規模並發採集,提升效率

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分佈式爬蟲。分佈式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握Scrapy+ MongoDB + Redis 這三種工具。Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分佈式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。

只要按照以上的Python爬蟲學習路線,一步步完成,即使是新手小白也能成為老司機,而且學下來會非常輕鬆順暢。所以新手在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目,直接開始操作。

其實學Python編程和練武功其實很相似,入門大致這樣幾步:找本靠譜的書,找個靠譜的師傅,找一個地方開始練習。

學語言也是這樣的:選一本通俗易懂的書,找一個好的視頻資料,然後自己裝一個IDE工具開始邊學邊寫。

7.給初學Python編程者的建議:

①信心。可能你看了視頻也沒在屏幕上做出點啥,都沒能把程序運行起來。但是要有自信,所有人都是這樣過來的。

②選擇適合自己的教程。有很早的書籍很經典,但是不是很適合你,很多書籍是我們學過一遍Python之後才會發揮很大作用。

③寫代碼,就是不斷地寫,練。這不用多說,學習什麼語言都是這樣。總看視頻,編不出東西。可以從書上的小案例開始寫,之後再寫完整的項目。

④除了學Python,計算機的基礎也要懂得很多,補一些英語知識也行。

⑤不但會寫,而且會看,看源碼是一個本領,調試代碼更是一個本領,就是解決問題的能力,挑錯。理解你自己的報錯信息,自己去解決。

⑥當你到達了一個水平,就多去看官方的文檔,在CSDN上面找下有關Python的博文或者群多去交流。

希望想學習Python的利用好現在的時間,管理好自己的學習時間,有效率地學習Python,Python這門語言可以做很多事情。

python爬蟲入門教程

工具/材料

IELD(python 3.6.2),windows 7

01

首先打開IDLE,輸入import requests模塊,如果沒有報錯,就說明已經安裝了這個模塊,請跳過此步驟;如果報錯,先打開命令行,win+r,彈出運行窗口,然後輸入cmd,點擊確定即可。

02

然後輸入pip3 install requests 安裝模塊即可

03

然後在IDLE窗口中輸入如下圖所示的命令

04

在瀏覽器中輸入,就可以打開網頁,這時點擊鼠標右鍵,然後點擊查看網頁源代碼,就可以發現,打印的結果和在瀏覽器中看到的源代碼是一樣的

如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子裡是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?

很簡單

import Queue

initial_page = “初始化頁”

url_queue = Queue.Queue()

seen = set()

seen.insert(initial_page)

url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛

if url_queue.size()0:

current_url = url_queue.get() #拿出隊例中第一個的url

store(current_url) #把這個url代表的網頁存儲好

for next_url in extract_urls(current_url): #提取把這個url里鏈向的url

if next_url not in seen:

seen.put(next_url)

url_queue.put(next_url)

else:

break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這裡,下面分析一下為什麼爬蟲事實上是個非常複雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率

如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的複雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的複雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這裡的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重複看一看(沒關係,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取

爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分佈式的爬取算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網絡跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:

在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分佈式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()

to_send = []

for next_url in extract_urls(current_url):

to_send.append(next_url)

store(current_url);

send_to_master(to_send)

#master.py

distributed_queue = DistributedQueue()

bf = BloomFilter()

initial_pages = “”

while(True):

if request == ‘GET’:

if distributed_queue.size()0:

send(distributed_queue.get())

else:

break

elif request == ‘POST’:

bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理

雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(數據庫應該怎樣安排)

有效地判重(這裡指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…

及時更新(預測這個網頁多久會更新一次)

如你所想,這裡每一個點都可以供很多研究者十數年的研究。雖然如此,

「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

python爬蟲怎麼做?

具體步驟

整體思路流程

簡單代碼演示

準備工作

下載並安裝所需要的python庫,包括:

對所需要的網頁進行請求並解析返回的數據

對於想要做一個簡單的爬蟲而言,這一步其實很簡單,主要是通過requests庫來進行請求,然後對返回的數據進行一個解析,解析之後通過對於元素的定位和選擇來獲取所需要的數據元素,進而獲取到數據的一個過程。

可以通過定義不同的爬蟲來實現爬取不同頁面的信息,並通過程序的控制來實現一個自動化爬蟲。

以下是一個爬蟲的實例

python爬蟲什麼教程最好

可以看這個教程:網頁鏈接

此教程 通過三個爬蟲案例來使學員認識Scrapy框架、了解Scrapy的架構、熟悉Scrapy各模塊。

此教程的大致內容:

1、Scrapy的簡介。

主要知識點:Scrapy的架構和運作流程。

2、搭建開發環境:

主要知識點:Windows及Linux環境下Scrapy的安裝。

3、Scrapy Shell以及Scrapy Selectors的使用。

4、使用Scrapy完成網站信息的爬取。

主要知識點:創建Scrapy項目(scrapy startproject)、定義提取的結構化數據(Item)、編寫爬取網站的 Spider 並提取出結構化數據(Item)、編寫 Item Pipelines 來存儲提取到的Item(即結構化數據)。

python網絡爬蟲怎麼學習

鏈接:

提取碼:2b6c

課程簡介

畢業不知如何就業?工作效率低經常挨罵?很多次想學編程都沒有學會?

Python 實戰:四周實現爬蟲系統,無需編程基礎,二十八天掌握一項謀生技能。

帶你學到如何從網上批量獲得幾十萬數據,如何處理海量大數據,數據可視化及網站製作。

課程目錄

開始之前,魔力手冊 for 實戰學員預習

第一周:學會爬取網頁信息

第二周:學會爬取大規模數據

第三周:數據統計與分析

第四周:搭建 Django 數據可視化網站

……

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/307230.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2025-01-02 18:06
下一篇 2025-01-02 18:06

相關推薦

  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29

發表回復

登錄後才能評論