本文目錄一覽:
- 1、如何用Python做爬蟲
- 2、python爬取動漫圖片無法用request找到圖片鏈接?
- 3、Python爬蟲是什麼?
- 4、python如何利用requests和bs4爬取圖片?
- 5、linux下python怎麼寫爬蟲獲取圖片
- 6、如何用Python做爬蟲?
如何用Python做爬蟲
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子裡是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = “初始化頁”
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這裡,下面分析一下為什麼爬蟲事實上是個非常複雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的複雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的複雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這裡的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重複看一看(沒關係,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了…
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分佈式的爬取算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網絡跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分佈式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = “”
while(True):
if request == ‘GET’:
if distributed_queue.size()0:
send(distributed_queue.get())
else:
break
elif request == ‘POST’:
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(數據庫應該怎樣安排)
有效地判重(這裡指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛…
及時更新(預測這個網頁多久會更新一次)
如你所想,這裡每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)
python爬取動漫圖片無法用request找到圖片鏈接?
你爬取的確實是源代碼
F12看element的圖片是js模板動態生成的。
給個提示,源碼的最底部有 “var DATA =” 這個後面跟的一堆數據存的才是你需要的
Python爬蟲是什麼?
為自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁。
網絡爬蟲為一個自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁,是搜索引擎的重要組成。傳統爬蟲從一個或若干初始網頁的URL開始,獲得初始網頁上的URL,在抓取網頁的過程中,不斷從當前頁面上抽取新的URL放入隊列,直到滿足系統的一定停止條件。
將根據一定的搜索策略從隊列中選擇下一步要抓取的網頁URL,並重複上述過程,直到達到系統的某一條件時停止。另外,所有被爬蟲抓取的網頁將會被系統存貯,進行一定的分析、過濾,並建立索引,以便之後的查詢和檢索。
擴展資料:
網絡爬蟲的相關要求規定:
1、由Python標準庫提供了系統管理、網絡通信、文本處理、數據庫接口、圖形系統、XML處理等額外的功能。
2、按照網頁內容目錄層次深淺來爬行頁面,處於較淺目錄層次的頁面首先被爬行。 當同一層次中的頁面爬行完畢後,爬蟲再深入下一層繼續爬行。
3、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合併、Unicode支持,二進制數據處理等功能。
參考資料來源:百度百科-網絡爬蟲
python如何利用requests和bs4爬取圖片?
爬取網站的內容不管爬啥。肯定得找到需要爬取內容的位置。如果是圖片的話。首先得找到圖片的地址。把鏈接複製下來打開是你想要的圖片的話。直接請求那個地址。寫入文件就行。用二進制加後綴就能保存圖片了。圖片音樂和視頻都是一樣的。
linux下python怎麼寫爬蟲獲取圖片
跟linux有什麼關係,python是跨平台的,爬取圖片的代碼如下:
import urllib.requestimport osimport randomdef url_open(url):
req=urllib.request.Request(url) #為請求設置user-agent,使得程序看起來更像一個人類
req.add_header(‘User-Agent’,’Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0′) #代理IP,使用戶能以不同IP訪問,從而防止被服務器發現
”’iplist=[‘1.193.162.123:8000′,’1.193.162.91:8000′,’1.193.163.32:8000’]
proxy_support=urllib.request.ProxyHandler({‘http’:random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[(‘User-Agent’,’Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER’)]
urllib.request.install_opener(opener)”’
response=urllib.request.urlopen(req)
html=response.read() return htmldef get_page(url):
html=url_open(url).decode(‘utf-8’)
a=html.find(‘current-comment-page’)+23
b=html.find(‘]’,a) #print(html[a:b])
return html[a:b]def find_imgs(url):
html=url_open(url).decode(‘utf-8’)
img_addrs=[]
a=html.find(‘img src=’) while a!=-1:
b=html.find(‘.jpg’,a,a+140) if b!=-1: if html[a+9]!=’h’:
img_addrs.append(‘http:’+html[a+9:b+4]) else:
img_addrs.append(html[a+9:b+4]) else:
b=a+9
a=html.find(‘img src=’,b) for each in img_addrs:
print(each+’我的打印’) return img_addrsdef save_imgs(folder,img_addrs):
for each in img_addrs: #print(‘one was saved’)
filename=each.split(‘/’)[-1] with open(filename,’wb’) as f:
img=url_open(each)
f.write(img)def download_mm(folder=’ooxx’,pages=10):
os.mkdir(folder)
os.chdir(folder)
url=””
page_num=int(get_page(url)) for i in range(pages):
page_num=page_num-1
page_url=url+’page-‘+str(page_num)+’#comments’
img_addrs=find_imgs(page_url)
save_imgs(folder,img_addrs)if __name__==’__main__’:
download_mm()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
完成
運行結果
如何用Python做爬蟲?
在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。
我們最常規的做法就是通過鼠標右鍵,選擇另存為。但有些圖片鼠標右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。
我們可以通過python 來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。
具體步驟
獲取整個頁面數據首先我們可以先獲取要下載圖片的整個頁面信息。
getjpg.py
#coding=utf-8import urllibdef getHtml(url):
page = urllib.urlopen(url)
html = page.read() return html
html = getHtml(“”)print html
Urllib 模塊提供了讀取web頁面數據的接口,我們可以像讀取本地文件一樣讀取www和ftp上的數據。首先,我們定義了一個getHtml()函數:
urllib.urlopen()方法用於打開一個URL地址。
read()方法用於讀取URL上的數據,向getHtml()函數傳遞一個網址,並把整個頁面下載下來。執行程序就會把整個網頁打印輸出。
2.篩選頁面中想要的數據
Python 提供了非常強大的正則表達式,我們需要先要了解一點python 正則表達式的知識才行。
假如我們百度貼吧找到了幾張漂亮的壁紙,通過到前段查看工具。找到了圖片的地址,如:src=」」pic_ext=」jpeg」
修改代碼如下:
import reimport urllibdef getHtml(url):
page = urllib.urlopen(url)
html = page.read() return htmldef getImg(html):
reg = r’src=”(.+?\.jpg)” pic_ext’
imgre = re.compile(reg)
imglist = re.findall(imgre,html) return imglist
html = getHtml(“”)print getImg(html)
我們又創建了getImg()函數,用於在獲取的整個頁面中篩選需要的圖片連接。re模塊主要包含了正則表達式:
re.compile() 可以把正則表達式編譯成一個正則表達式對象.
re.findall() 方法讀取html 中包含 imgre(正則表達式)的數據。
運行腳本將得到整個頁面中包含圖片的URL地址。
3.將頁面篩選的數據保存到本地
把篩選的圖片地址通過for循環遍歷並保存到本地,代碼如下:
#coding=utf-8import urllibimport redef getHtml(url):
page = urllib.urlopen(url)
html = page.read() return htmldef getImg(html):
reg = r’src=”(.+?\.jpg)” pic_ext’
imgre = re.compile(reg)
imglist = re.findall(imgre,html)
x = 0 for imgurl in imglist:
urllib.urlretrieve(imgurl,’%s.jpg’ % x)
x+=1html = getHtml(“”)print getImg(html)
這裡的核心是用到了urllib.urlretrieve()方法,直接將遠程數據下載到本地。
通過一個for循環對獲取的圖片連接進行遍歷,為了使圖片的文件名看上去更規範,對其進行重命名,命名規則通過x變量加1。保存的位置默認為程序的存放目錄。
程序運行完成,將在目錄下看到下載到本地的文件。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/270001.html