本文目錄一覽:
- 1、給初學者一些學習Python的建議
- 2、13個最常用的Python深度學習庫介紹
- 3、如何從python的小白變成一個python的大神
- 4、安利3個被程序員誇爆的Python編程小功能
- 5、萬字乾貨,Python語法大合集,一篇文章帶你入門
- 6、如何成為Python高手
給初學者一些學習Python的建議
有些人認為,對於那些真正想學好編程,以此為工作,或是走科研道路的人,第一門語言最好是C;而有些人認為:python是最容易入門的編程語言,沒有之一。對於這個問題,仁者見仁智者見智了。
如果初學者接觸的第一門語言是C或者C++,對他們來說最難的不是語法,而是容易出現內存泄漏、指針等問題。有時候排查這些問題對初學者的打擊很大,尤其是沒掌握排查BUG技巧時。
如果初學者接觸的第一門語言是Python,學習曲線則會平滑得多,掌握一些基本語法和Python內置的數據結構,已經可以上手寫一些小工具或者小型應用。這對初學者來說,非常重要。因為學習的過程是一個突破舒適區的過程,會面臨很多痛苦,如果學習過程得不到激勵,很容易半途而廢,類似我們開玩笑說的「從入門到放棄」。
Python還有很多優點:上手快,第三方庫豐富,資料豐富,很容易做出「可見可得」的應用。比如你要拿C或者C++做web服務,這上手門檻就有點高了。所以很多工科學生,甚至是科班學生會問學了C/C++到底有什麼用,因為想上手做一些「可見可得」的應用太難。
Python就大不同,你想搞Web開發?上來一個Flask框架立馬就擼。想搞點數據分析?上來一個Panda+數據可視化,擼起來輕鬆愉快甚有快感。想抓取什麼數據?你自己基於request擼一個小爬蟲採集點網站信息,app信息都不是什麼難事。
也是因為這樣,學習Python的過程幾乎接近「無痛」,有很好的學習正反饋過程,學一點知識就能做一點小東西,能看得到自己成長和進步。安利了這麼多好處,來看看學Python分幾個階段吧。
1.基礎知識
Python最基本的語言特性和語法:
變量
數據類型與數據結構
輸入和輸出
運算符、表達式、語句
語句控制流(順序控制,選擇控制和循環控制)
面向過程編程
面向對象編程
異常處理
組織代碼
標準庫、第三方庫
針對面向對象這一塊需要重點的講一下,為什麼會有面向對象?以及我們如何設計面向對象系統?這個思考的過程有助於你理解面向對象編程思想。
可以說「一切皆對象」這句話普適性是很強的,大家都在玩的王者農藥,裏面每一個對戰英雄,每一個野怪,每一張地圖都是通過面向對象的思想構建起來的。
如果一開始你覺得太複雜,大可把用「分而治之」的思想把複雜的對象break down,分解成多個簡單合理的對象。任何複雜的系統都可以由若干個簡單可靠的系統組成,多個簡單可靠的系統有序地組織起來是可以實現強大功能的。
舉個例子,還拿農藥來說,」英雄「是可以作為一個基類的對吧,每個英雄都有血條,移動速度,AD,AP,物防,法扛等等。李白平A後裔一下,這是對象之間的通信(或者說交互)。後裔放大打中李白,李白眩暈,這一系列的觸發過程都可以通過面向對象來建模。
在掌握了語法特點,掌握了面向對象的思想之後,我們應該能夠在控制台(windows或者mac的命令行)裡邊實現一個有意思的程序。這個程序應該解決現實生活中的一個實際問題。比如出現一個職位的發佈和管理系統。有以下功能。我們可以錄入職位信息。保存到文件上。我們還可以加載職位信息。按多種條件去查詢,比如按關鍵字按城市。按薪資範圍。按商圈工作年限等等。
在做這個的過程中,自己需要設計一個很好的面向對象系統。也把Python里常用的語言基本特性都用到了。達到這個階段算是勉強及格了吧,不過僅僅是在語言掌握層面。如果想當一個合格的研發工程師,還需要掌握很多其他技能。
2. 進階的階段
現在的開發大部分是基於web的,比如app要調web接口,pc端肯定也要調web接口,所以我們不能光在控制台裏面玩。這個時候需要了解,http協議和Python web開發。我們可以重做前面提到的求職發佈系統,學習基於Python web如何實現。這個時候你需要實現若干個接口:
用戶端:
用戶註冊
用戶登錄
請求首頁刷出默認的職位列表
篩選職位列表
根據城市
根據關鍵字
根據薪酬
根據工作商圈
管理後台:
登錄
發佈職位
更新職位
刪除職位
為了實現以上接口,你需要弄清楚什麼是GET,什麼是POST請求,什麼場景下用GET,什麼場景用POST。你還需要明白一個Python web開發框架,要明白一個http請求到了web框架之後,框架做了什麼事情,如何在裏面實現業務邏輯。哪些數據是服務共享的,哪些數據是用戶/請求獨享的。
此外,應該學會Python如何操作數據庫實現增刪改查,大部分的任務都離不開增刪改查。比如我提到的發佈職位就是create的過程,更新就是update,還有刪除是delete,讀是read。江湖有一個戲稱CRUD boy。
如果能順利度過進階階段,你應該能舉一反三實現其他類似系統了。比如現在很火的分銷,拼團,還有新聞Feeds等等。
好像我沒怎麼提數據結構和算法,這個要看個人追求。如果你要在最短時間內學會Python開發,恐怕是沒時間學好數據結構和算法了,能掌握自帶的數據結構用法就行。如果你的學習時間充足,我的建議是一定要學數據結構和算法。為了以後長期的發展,為了人民幣,一定要學好數據結構和算法,我簡直苦口婆心地勸啊。
3. 工業界經驗
最後一個階段是實際的工業經驗。這個階段,你應該對公司用的基礎架構,如RPC,數據庫緩存消息系統中間件,爛熟於心。同時應該掌握最基本的系統設計的技巧。知道如何根據一個實際需求,設計一個高可用,高性能高擴展性的系統。
實際上我覺得第一個階段是最容易的,第二個階段會碰到一些坑,有時候不好解決。在第二個階段,你可能需要比較好的自學能力,或者有一個好的學長導師。第三個階段需要比較體系化的訓練和思考。
如果說你的系統設計能力ok,甚至經驗豐富,再加上你不錯的算法,你肯定有一份好工作,薪資可能說多了顯浮誇,但優秀的應屆生很多人超過30w,甚至50w已經是常態了。工作3-5年的過百萬的也大有人在。
這個時代,程序員雖然辛苦了一點,但無疑碰上最好的時代了。
PS:辛苦是因為知識更新很快,行業發展也很快,逼着程序員也要往前走。保持學習才是從業者的基本素養,而不是掌握某門語言某門技術。
更多Python知識,請關註:Python自學網!!
13個最常用的Python深度學習庫介紹
13個最常用的Python深度學習庫介紹
如果你對深度學習和卷積神經網絡感興趣,但是並不知道從哪裡開始,也不知道使用哪種庫,那麼這裡就為你提供了許多幫助。
在這篇文章里,我詳細解讀了9個我最喜歡的Python深度學習庫。
這個名單並不詳盡,它只是我在計算機視覺的職業生涯中使用並在某個時間段發現特別有用的一個庫的列表。
這其中的一些庫我比別人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是間接的使用,比如Theano和TensorFlow(庫包括Keras、deepy和Blocks等)。
另外的我只是在一些特別的任務中用過(比如nolearn和他們的Deep Belief Network implementation)。
這篇文章的目的是向你介紹這些庫。我建議你認真了解這裡的每一個庫,然後在某個具體工作情境中你就可以確定一個最適用的庫。
我想再次重申,這份名單並不詳盡。此外,由於我是計算機視覺研究人員並長期活躍在這個領域,對卷積神經網絡(細胞神經網絡)方面的庫會關注更多。
我把這個深度學習庫的列表分為三個部分。
第一部分是比較流行的庫,你可能已經很熟悉了。對於這些庫,我提供了一個通俗的、高層次的概述。然後,針對每個庫我詳細解說了我的喜歡之處和不喜歡之處,並列舉了一些適當的應用案例。
第二部分進入到我個人最喜歡的深度學習庫,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最後,我對第一部分中不經常使用的庫做了一個「福利」板塊,你或許還會從中發現有用的或者是在第二板塊中我還沒有嘗試過但看起來很有趣的庫。
接下來就讓我們繼續探索。
針對初學者:
Caffe
提到「深度學習庫」就不可能不說到Caffe。事實上,自從你打開這個頁面學習深度學習庫,我就敢打保票你肯定聽說Caffe。
那麼,究竟Caffe是什麼呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度學習框架。它是模塊化的,速度極快。而且被應用於學術界和產業界的start-of-the-art應用程序中。
事實上,如果你去翻閱最新的深度學習出版物(也提供源代碼),你就很可能會在它們相關的GitHub庫中找到Caffe模型。
雖然Caffe本身並不是一個Python庫,但它提供綁定到Python上的編程語言。我們通常在新領域開拓網絡的時候使用這些綁定。
我把Caffe放在這個列表的原因是它幾乎被應用在各個方面。你可以在一個空白文檔里定義你的模型架構和解決方案,建立一個JSON文件類型的.prototxt配置文件。Caffe二進制文件提取這些.prototxt文件並培訓你的網絡。Caffe完成培訓之後,你可以把你的網絡和經過分類的新圖像通過Caffe二進制文件,更好的就直接通過Python或MATLAB的API。
雖然我很喜歡Caffe的性能(它每天可以在K40 GPU上處理60萬張圖片),但相比之下我更喜歡Keras和mxnet。
主要的原因是,在.prototxt文件內部構建架構可能會變得相當乏味和無聊。更重要的是, Caffe不能用編程方式調整超參數!由於這兩個原因,在基於Python的API中我傾向於對允許我實現終端到終端聯播網的庫傾斜(包括交叉驗證和調整超參數)。
Theano
在最開始我想說Theano是美麗的。如果沒有Theano,我們根本不會達到現有的深度學習庫的數量(特別是在Python)。同樣的,如果沒有numpy,我們就不會有SciPy、scikit-learn和 scikit-image,,同樣可以說是關於Theano和深度學習更高級別的抽象。
非常核心的是,Theano是一個Python庫,用來定義、優化和評估涉及多維數組的數學表達式。 Theano通過與numpy的緊密集成,透明地使用GPU來完成這些工作。
雖然可以利用Theano建立深度學習網絡,但我傾向於認為Theano是神經網絡的基石,同樣的numpy是作為科學計算的基石。事實上,大多數我在文章中提到的庫都是圍繞着Theano,使自己變得更加便利。
不要誤會我的意思,我愛Theano,我只是不喜歡用Theano編寫代碼。
在Theano建設卷積神經網絡就像只用本機Python中的numpy寫一個定製的支持向量機(SVM),當然這個對比並不是很完美。
你可以做到嗎?
當然可以。
它值得花費您的時間和精力嗎?
嗯,也許吧。這取決於你是否想擺脫低級別或你的應用是否需要。
就個人而言,我寧願使用像Keras這樣的庫,它把Theano包裝成更有人性化的API,同樣的方式,scikit-learn使機器學習算法工作變得更加容易。
TensorFlow
與Theano類似,TensorFlow是使用數據流圖進行數值計算的開源庫(這是所有神經網絡固有的特徵)。最初由谷歌的機器智能研究機構內的Google Brain Team研究人員開發,此後庫一直開源,並提供給公眾。
相比於Theano ,TensorFlow的主要優點是分佈式計算,特別是在多GPU的環境中(雖然這是Theano正在攻克的項目)。
除了用TensorFlow而不是Theano替換Keras後端,對於TensorFlow庫我並沒有太多的經驗。然而在接下來的幾個月里,我希望這有所改變。
Lasagne
Lasagne是Theano中用於構建和訓練網絡的輕量級庫。這裡的關鍵詞是輕量級的,也就意味着它不是一個像Keras一樣圍繞着Theano的重包裝的庫。雖然這會導致你的代碼更加繁瑣,但它會把你從各種限制中解脫出來,同時還可以讓您根據Theano進行模塊化的構建。
簡而言之:Lasagne的功能是Theano的低級編程和Keras的高級抽象之間的一個折中。
我最喜歡的:
Keras
如果我必須選出一個最喜歡的深度學習Python庫,我將很難在Keras和mxnet中做出抉擇——但最後,我想我會選Keras。
說真的,Keras的好處我說都說不完。
Keras是一個最低限度的、模塊化的神經網絡庫,可以使用Theano或TensorFlow作為後端。Keras最主要的用戶體驗是,從構思到產生結果將會是一個非常迅速的過程。
在Keras中架構網絡設計是十分輕鬆自然的。它包括一些state-of-the-art中針對優化(Adam,RMSProp)、標準化(BatchNorm)和激活層(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷積神經網絡,這也是我十分需要的。無論它是有意還是無意的,我覺得從計算機視覺的角度來看這是非常有價值的。
更重要的是,你既可以輕鬆地構建基於序列的網絡(其中輸入線性流經網絡)又可以創建基於圖形的網絡(輸入可以「跳過」某些層直接和後面對接)。這使得創建像GoogLeNet和SqueezeNet這樣複雜的網絡結構變得容易得多。
我認為Keras唯一的問題是它不支持多GPU環境中並行地訓練網絡。這可能會也可能不會成為你的大忌。
如果我想儘快地訓練網絡,那麼我可能會使用mxnet。但是如果我需要調整超參數,我就會用Keras設置四個獨立的實驗(分別在我的Titan X GPUs上運行)並評估結果。
mxnet
我第二喜歡的深度學習Python庫無疑就是mxnet(重點也是訓練圖像分類網絡)。雖然在mxnet中站立一個網絡可能需要較多的代碼,但它會提供給你驚人數量的語言綁定(C ++、Python、R、JavaScript等)。
Mxnet庫真正出色的是分佈式計算,它支持在多個CPU / GPU機訓練你的網絡,甚至可以在AWS、Azure以及YARN集群。
它確實需要更多的代碼來設立一個實驗並在mxnet上運行(與Keras相比),但如果你需要跨多個GPU或系統分配訓練,我推薦mxnet。
sklearn-theano
有時候你並不需要終端到終端的培養一個卷積神經網絡。相反,你需要把CNN看作一個特徵提取器。當你沒有足夠的數據來從頭培養一個完整的CNN時它就會變得特別有用。僅僅需要把你的輸入圖像放入流行的預先訓練架構,如OverFeat、AlexNet、VGGNet或GoogLeNet,然後從FC層提取特徵(或任何您要使用的層)。
總之,這就是sklearn-theano的功能所在。你不能用它從頭到尾的訓練一個模型,但它的神奇之處就是可以把網絡作為特徵提取器。當需要評估一個特定的問題是否適合使用深度學習來解決時,我傾向於使用這個庫作為我的第一手判斷。
nolearn
我在PyImageSearch博客上用過幾次nolearn,主要是在我的MacBook Pro上進行一些初步的GPU實驗和在Amazon EC2 GPU實例中進行深度學習。
Keras把 Theano和TensorFlow包裝成了更具人性化的API,而nolearn也為Lasagne做了相同的事。此外,nolearn中所有的代碼都是與scikit-learn兼容的,這對我來說絕對是個超級的福利。
我個人不使用nolearn做卷積神經網絡(CNNs),但你當然也可以用(我更喜歡用Keras和mxnet來做CNNs)。我主要用nolearn來製作Deep Belief Networks (DBNs)。
DIGITS
DIGITS並不是一個真正的深度學習庫(雖然它是用Python寫的)。DIGITS(深度學習GPU培訓系統)實際上是用於培訓Caffe深度學習模式的web應用程序(雖然我認為你可以破解源代碼然後使用Caffe以外其他的後端進行工作,但這聽起來就像一場噩夢)。
如果你曾經用過Caffe,那麼你就會知道通過它的終端來定義.prototxt文件、生成圖像數據、運行網絡並監管你的網絡訓練是相當繁瑣的。 DIGITS旨在通過讓你在瀏覽器中執行這些任務來解決這個問題。
此外,DIGITS的用戶界面非常出色,它可以為你提供有價值的統計數據和圖表作為你的模型訓練。另外,你可以通過各種輸入輕鬆地可視化網絡中的激活層。最後,如果您想測試一個特定的圖像,您可以把圖片上傳到你的DIGITS服務器或進入圖片的URL,然後你的Caffe模型將會自動分類圖像並把結果顯示在瀏覽器中。乾淨利落!
Blocks
說實話,雖然我一直想嘗試,但截至目前我的確從來沒用過Blocks(這也是我把它包括在這個列表裡的原因)。就像許多個在這個列表中的其他庫一樣,Blocks建立在Theano之上,呈現出一個用戶友好型的API。
deepy
如果讓你猜deepy是圍繞哪個庫建立的,你會猜什麼?
沒錯,就是Theano。
我記得在前一段時間用過deepy(做了初始提交),但在接下里的大概6-8個月我都沒有碰它了。我打算在接下來的博客文章里再嘗試一下。
pylearn2
雖然我從沒有主動地使用pylearn2,但由於歷史原因,我覺得很有必要把它包括在這個列表裡。 Pylearn2不僅僅是一般的機器學習庫(地位類似於scikit-learn),也包含了深度學習算法的實現。
對於pylearn2我最大的擔憂就是(在撰寫本文時),它沒有一個活躍的開發者。正因為如此,相比於像Keras和mxnet這樣的有積極維護的庫,推薦pylearn2我還有些猶豫。
Deeplearning4j
這本應是一個基於Python的列表,但我想我會把Deeplearning4j包括在這裡,主要是出於對他們所做事迹的無比崇敬——Deeplearning4j為JVM建立了一個開源的、分佈式的深度學習庫。
如果您在企業工作,你可能會有一個塞滿了用過的Hadoop和MapReduce服務器的儲存器。也許這些你還在用,也許早就不用了。
你怎樣才能把這些相同的服務器應用到深度學習里?
事實證明是可以的——你只需要Deeplearning4j。
總計
以上就是本文關於13個最常用的Python深度學習庫介紹的全部內容
如何從python的小白變成一個python的大神
學習、學習再學習
實踐、實踐、再實戰。
安利一個Python學習網站吧:劉江的Python教程
安利3個被程序員誇爆的Python編程小功能
隨着數據挖掘分析在企業業務層面的深度應用,我們會發現,在實際業務場景中,數據分析工作已經逐漸分為2個層次;較為流程化但與業務深度結合的數據分析工作,會更傾向於讓業務人員通過專業分析工具進行自主 探索 分析,比如我們的Tempo大數據分析平台,就可以通過拖拽式、智能化的簡便操作,幫助業務人員快速上手數據分析工作,快速將業務數據價值變現。
而針對一些更加細緻、專業化的建模分析需求,其實還是通過代碼的方式去實現更加高效靈活。Tempo大數據分析平台正是考慮到廣大專業數據分析人員的實際需求,專門開發了 【擴展編程】 這一功能模塊,讓自定義編程和平台中已有的節點結合使用,快速提高數據分析工作效率!
為了讓廣大數據分析師在Tempo平台中,既可以通過編程實現更加靈活的建模,也能避免原生Python編程的一些使用局限,我們還通過廣泛的用戶調研,在【擴展編程】模塊設計了 3個提高Python編程易用性的小功能 ,下面我們一起來看看這三個功能都具體解決了哪些問題~
1、Python洞察不直觀 ,分析結果可讀性低
我們常說「一圖勝千言」,對於數據分析工作來說更是如此。分析結果最終還是要直接賦能實際業務,由於Python代碼行的形式讓分析結果可讀性極低,分析人員無法快速實現對數據的直觀 探索 分析,導致整體工作效率的降低。
2、Python調試分析難 ,校驗調試流程多,反覆折騰易出錯
調試和分析是Python開發中非常重要的環節,但代碼 校驗報錯結果難查看 的問題,讓很多數據分析人員大傷腦筋。
尤其是現在很多企業數據分析項目是在自己的數據平台中進行的,分析人員只能把平台中的代碼複製到第三方平台中進行校驗,調試好後再粘貼回平台中運行,非常麻煩。
3、Python運行總「缺包」 ,寫碼大半天,報錯一瞬間
在一般的企業數據分析項目中,預先有可能會設置有多套Python環境,版本並不統一。這就會導致分析人員常常並不清楚自己當前使用的到底是哪一套Python環境,在編碼時引用的Python包,在不同的Python環境上運行很有可能會出現缺失,引起代碼執行報錯,而且這種錯誤信息並不好排查,一旦報錯只能從頭再來,讓程序員們白白做了無用功。
以往專業數據分析人員遇到以上問題,只能選擇用更多的時間和精力去修復bug,那麼在我們的Tempo大數據分析平台之中,又是如何解決這些問題,讓 Python編程的應用 更簡便、更高效、更適應企業實際需求呢?
1、圖形化洞察,快速 探索 數據價值
針對傳統編碼數據分析方式難以直觀展示數據分析結果的缺點,Tempo大數據分析平台——擴展編程模塊特別支持在代碼區域設置 通過matplotlib/seabron等圖形方法實現節點洞察 ,校驗通過後,就可以直接在洞察區域中查看繪製的圖形,比如:折線圖、直方圖、條形圖、餅圖等。
以後業務部門簡單的可視化分析需求就可以直接在建模挖掘分析的同時快速產出,立等可取,無需再周轉其他可視化分析工具,大大提高的數據價值變現的效率。
2、控制台,讓調試分析更便捷
針對傳統Python編程調試報錯信息不好查看的問題, Tempo大數據分析平台—擴展編程模塊中的控制台功能,可以 直接在指定區域中顯示錯誤信息和代碼中需要print的部分 ,便於使用者快速發現問題,立即調整代碼。
除了幫助專業數據分析人員提高工作效率,控制台中的【示例】小模塊還內置了常用的參考代碼,可以幫助一些不太能熟練應用Python編程語言的小白用戶,通過復用或小部分修改邏輯代碼的方式,也能快速完成數據邏輯處理工作。用好這個功能,團隊內部的技能培訓也能更有章法了呢!
3、快速查詢Python環境和包版本,事前預防,再也不怕「丟包缺包」
Python編程最怕丟包缺包問題,在Tempo大數據分析平台中,我們內置了Python環境版本和包版本的信息查詢組件,分析人員在編碼之前,可以預先查詢一下當前的Python環境版本和包版本,如果發現有缺包就可以在編碼工作開始之前補充安裝,把「丟包缺包」造成的代碼報錯風險降到最低。
今天的Tempo小課堂中,小T主要給大家介紹了如何通過Python擴展編程的三個小功能,幫助代碼偏好的專業數據分析人員減少不必要的麻煩操作,提高工作效率。
萬字乾貨,Python語法大合集,一篇文章帶你入門
這份資料非常純粹,只有Python的基礎語法,專門針對想要學習Python的小白。
Python中用#表示單行注釋,#之後的同行的內容都會被注釋掉。
使用三個連續的雙引號表示多行注釋,兩個多行注釋標識之間內容會被視作是注釋。
Python當中的數字定義和其他語言一樣:
我們分別使用+, -, *, /表示加減乘除四則運算符。
這裡要注意的是,在Python2當中,10/3這個操作會得到3,而不是3.33333。因為除數和被除數都是整數,所以Python會自動執行整數的計算,幫我們把得到的商取整。如果是10.0 / 3,就會得到3.33333。目前Python2已經不再維護了,可以不用關心其中的細節。
但問題是Python是一個 弱類型 的語言,如果我們在一個函數當中得到兩個變量,是無法直接判斷它們的類型的。這就導致了同樣的計算符可能會得到不同的結果,這非常蛋疼。以至於程序員在運算除法的時候,往往都需要手工加上類型轉化符,將被除數轉成浮點數。
在Python3當中撥亂反正,修正了這個問題,即使是兩個整數相除,並且可以整除的情況下,得到的結果也一定是浮點數。
如果我們想要得到整數,我們可以這麼操作:
兩個除號表示 取整除 ,Python會為我們保留去除餘數的結果。
除了取整除操作之外還有取餘數操作,數學上稱為取模,Python中用%表示。
Python中支持 乘方運算 ,我們可以不用調用額外的函數,而使用**符號來完成:
當運算比較複雜的時候,我們可以用括號來強制改變運算順序。
Python中用首字母大寫的True和False表示真和假。
用and表示與操作,or表示或操作,not表示非操作。而不是C++或者是Java當中的, || 和!。
在Python底層, True和False其實是1和0 ,所以如果我們執行以下操作,是不會報錯的,但是在邏輯上毫無意義。
我們用==判斷相等的操作,可以看出來True==1, False == 0.
我們要小心Python當中的bool()這個函數,它並不是轉成bool類型的意思。如果我們執行這個函數,那麼 只有0會被視作是False,其他所有數值都是True :
Python中用==判斷相等,表示大於,=表示大於等於, 表示小於,=表示小於等於,!=表示不等。
我們可以用and和or拼裝各個邏輯運算:
注意not,and,or之間的優先級,其中not and or。如果分不清楚的話,可以用括號強行改變運行順序。
關於list的判斷,我們常用的判斷有兩種,一種是剛才介紹的==,還有一種是is。我們有時候也會簡單實用is來判斷,那麼這兩者有什麼區別呢?我們來看下面的例子:
Python是全引用的語言,其中的對象都使用引用來表示。is判斷的就是 兩個引用是否指向同一個對象 ,而==則是判斷兩個引用指向的具體內容是否相等。舉個例子,如果我們把引用比喻成地址的話,is就是判斷兩個變量的是否指向同一個地址,比如說都是沿河東路XX號。而==則是判斷這兩個地址的收件人是否都叫張三。
顯然,住在同一個地址的人一定都叫張三,但是住在不同地址的兩個人也可以都叫張三,也可以叫不同的名字。所以如果a is b,那麼a == b一定成立,反之則不然。
Python當中對字符串的限制比較松, 雙引號和單引號都可以表示字符串 ,看個人喜好使用單引號或者是雙引號。我個人比較喜歡單引號,因為寫起來方便。
字符串也支持+操作,表示兩個字符串相連。除此之外,我們把兩個字符串寫在一起,即使沒有+,Python也會為我們拼接:
我們可以使用[]來查找字符串當中某個位置的字符,用 len 來計算字符串的長度。
我們可以在字符串前面 加上f表示格式操作 ,並且在格式操作當中也支持運算,比如可以嵌套上len函數等。不過要注意,只有Python3.6以上的版本支持f操作。
最後是None的判斷,在Python當中None也是一個對象, 所有為None的變量都會指向這個對象 。根據我們前面所說的,既然所有的None都指向同一個地址,我們需要判斷一個變量是否是None的時候,可以使用is來進行判斷,當然用==也是可以的,不過我們通常使用is。
理解了None之後,我們再回到之前介紹過的bool()函數,它的用途其實就是判斷值是否是空。所有類型的 默認空值會被返回False ,否則都是True。比如0,””,[], {}, ()等。
除了上面這些值以外的所有值傳入都會得到True。
Python當中的標準輸入輸出是 input和print 。
print會輸出一個字符串,如果傳入的不是字符串會自動調用__str__方法轉成字符串進行輸出。 默認輸出會自動換行 ,如果想要以不同的字符結尾代替換行,可以傳入end參數:
使用input時,Python會在命令行接收一行字符串作為輸入。可以在input當中傳入字符串,會被當成提示輸出:
Python支持 三元表達式 ,但是語法和C++不同,使用if else結構,寫成:
上段代碼等價於:
Python中用[]表示空的list,我們也可以直接在其中填充元素進行初始化:
使用append和pop可以在list的末尾插入或者刪除元素:
list可以通過[]加上下標訪問指定位置的元素,如果是負數,則表示 倒序訪問 。-1表示最後一個元素,-2表示倒數第二個,以此類推。如果訪問的元素超過數組長度,則會出發 IndexError 的錯誤。
list支持切片操作,所謂的切片則是從原list當中 拷貝 出指定的一段。我們用start: end的格式來獲取切片,注意,這是一個 左閉右開區間 。如果留空表示全部獲取,我們也可以額外再加入一個參數表示步長,比如[1:5:2]表示從1號位置開始,步長為2獲取元素。得到的結果為[1, 3]。如果步長設置成-1則代表反向遍歷。
如果我們要指定一段區間倒序,則前面的start和end也需要反過來,例如我想要獲取[3: 6]區間的倒序,應該寫成[6:3:-1]。
只寫一個:,表示全部拷貝,如果用is判斷拷貝前後的list會得到False。可以使用del刪除指定位置的元素,或者可以使用remove方法。
insert方法可以 指定位置插入元素 ,index方法可以查詢某個元素第一次出現的下標。
list可以進行加法運算,兩個list相加表示list當中的元素合併。 等價於使用extend 方法:
我們想要判斷元素是否在list中出現,可以使用 in關鍵字 ,通過使用len計算list的長度:
tuple和list非常接近,tuple通過()初始化。和list不同, tuple是不可變對象 。也就是說tuple一旦生成不可以改變。如果我們修改tuple,會引發TypeError異常。
由於小括號是有改變優先級的含義,所以我們定義單個元素的tuple, 末尾必須加上逗號 ,否則會被當成是單個元素:
tuple支持list當中絕大部分操作:
我們可以用多個變量來解壓一個tuple:
解釋一下這行代碼:
我們在b的前面加上了星號, 表示這是一個list 。所以Python會在將其他變量對應上值的情況下,將剩下的元素都賦值給b。
補充一點,tuple本身雖然是不可變的,但是 tuple當中的可變元素是可以改變的 。比如我們有這樣一個tuple:
我們雖然不能往a當中添加或者刪除元素,但是a當中含有一個list,我們可以改變這個list類型的元素,這並不會觸發tuple的異常:
dict也是Python當中經常使用的容器,它等價於C++當中的map,即 存儲key和value的鍵值對 。我們用{}表示一個dict,用:分隔key和value。
對 。我們用{}表示一個dict,用:分隔key和value。
dict的key必須為不可變對象,所以 list、set和dict不可以作為另一個dict的key ,否則會拋出異常:
我們同樣用[]查找dict當中的元素,我們傳入key,獲得value,等價於get方法。
我們可以call dict當中的keys和values方法,獲取dict當中的所有key和value的集合,會得到一個list。在Python3.7以下版本當中,返回的結果的順序可能和插入順序不同,在Python3.7及以上版本中,Python會保證返回的順序和插入順序一致:
我們也可以用in判斷一個key是否在dict當中,注意只能判斷key。
如果使用[]查找不存在的key,會引發KeyError的異常。如果使用 get方法則不會引起異常,只會得到一個None :
setdefault方法可以 為不存在的key 插入一個value,如果key已經存在,則不會覆蓋它:
我們可以使用update方法用另外一個dict來更新當前dict,比如a.update(b)。對於a和b交集的key會被b覆蓋,a當中不存在的key會被插入進來:
我們一樣可以使用del刪除dict當中的元素,同樣只能傳入key。
Python3.5以上的版本支持使用**來解壓一個dict:
set是用來存儲 不重複元素 的容器,當中的元素都是不同的,相同的元素會被刪除。我們可以通過set(),或者通過{}來進行初始化。注意當我們使用{}的時候,必須要傳入數據,否則Python會將它和dict弄混。
set當中的元素也必須是不可變對象,因此list不能傳入set。
可以調用add方法為set插入元素:
set還可以被認為是集合,所以它還支持一些集合交叉並補的操作。
set還支持 超集和子集的判斷 ,我們可以用大於等於和小於等於號判斷一個set是不是另一個的超集或子集:
和dict一樣,我們可以使用in判斷元素在不在set當中。用copy可以拷貝一個set。
Python當中的判斷語句非常簡單,並且Python不支持switch,所以即使是多個條件,我們也只能 羅列if-else 。
我們可以用in來循環迭代一個list當中的內容,這也是Python當中基本的循環方式。
如果我們要循環一個範圍,可以使用range。range加上一個參數表示從0開始的序列,比如range(10),表示[0, 10)區間內的所有整數:
如果我們傳入兩個參數,則 代表迭代區間的首尾 。
如果我們傳入第三個元素,表示每次 循環變量自增的步長 。
如果使用enumerate函數,可以 同時迭代一個list的下標和元素 :
while循環和C++類似,當條件為True時執行,為false時退出。並且判斷條件不需要加上括號:
Python當中使用 try和except捕獲異常 ,我們可以在except後面限制異常的類型。如果有多個類型可以寫多個except,還可以使用else語句表示其他所有的類型。finally語句內的語法 無論是否會觸發異常都必定執行 :
在Python當中我們經常會使用資源,最常見的就是open打開一個文件。我們 打開了文件句柄就一定要關閉 ,但是如果我們手動來編碼,經常會忘記執行close操作。並且如果文件異常,還會觸發異常。這個時候我們可以使用with語句來代替這部分處理,使用with會 自動在with塊執行結束或者是觸發異常時關閉打開的資源 。
以下是with的幾種用法和功能:
凡是可以使用in語句來迭代的對象都叫做 可迭代對象 ,它和迭代器不是一個含義。這裡只有可迭代對象的介紹,想要了解迭代器的具體內容,請移步傳送門:
Python——五分鐘帶你弄懂迭代器與生成器,夯實代碼能力
當我們調用dict當中的keys方法的時候,返回的結果就是一個可迭代對象。
我們 不能使用下標來訪問 可迭代對象,但我們可以用iter將它轉化成迭代器,使用next關鍵字來獲取下一個元素。也可以將它轉化成list類型,變成一個list。
使用def關鍵字來定義函數,我們在傳參的時候如果指定函數內的參數名, 可以不按照函數定義的順序 傳參:
可以在參數名之前加上*表示任意長度的參數,參數會被轉化成list:
也可以指定任意長度的關鍵字參數,在參數前加上**表示接受一個dict:
當然我們也可以兩個都用上,這樣可以接受任何參數:
傳入參數的時候我們也可以使用*和**來解壓list或者是dict:
Python中的參數 可以返回多個值 :
函數內部定義的變量即使和全局變量重名,也 不會覆蓋全局變量的值 。想要在函數內部使用全局變量,需要加上 global 關鍵字,表示這是一個全局變量:
Python支持 函數式編程 ,我們可以在一個函數內部返回一個函數:
Python中可以使用lambda表示 匿名函數 ,使用:作為分隔,:前面表示匿名函數的參數,:後面的是函數的返回值:
我們還可以將函數作為參數使用map和filter,實現元素的批量處理和過濾。關於Python中map、reduce和filter的使用,具體可以查看之前的文章:
五分鐘帶你了解map、reduce和filter
我們還可以結合循環和判斷語來給list或者是dict進行初始化:
使用 import語句引入一個Python模塊 ,我們可以用.來訪問模塊中的函數或者是類。
我們也可以使用from import的語句,單獨引入模塊內的函數或者是類,而不再需要寫出完整路徑。使用from import *可以引入模塊內所有內容(不推薦這麼干)
可以使用as給模塊內的方法或者類起別名:
我們可以使用dir查看我們用的模塊的路徑:
這麼做的原因是如果我們當前的路徑下也有一個叫做math的Python文件,那麼 會覆蓋系統自帶的math的模塊 。這是尤其需要注意的,不小心會導致很多奇怪的bug。
我們來看一個完整的類,相關的介紹都在注釋當中
以上內容的詳細介紹之前也有過相關文章,可以查看:
Python—— slots ,property和對象命名規範
下面我們來看看Python當中類的使用:
這裡解釋一下,實例和對象可以理解成一個概念,實例的英文是instance,對象的英文是object。都是指類經過實例化之後得到的對象。
繼承可以讓子類 繼承父類的變量以及方法 ,並且我們還可以在子類當中指定一些屬於自己的特性,並且還可以重寫父類的一些方法。一般我們會將不同的類放在不同的文件當中,使用import引入,一樣可以實現繼承。
我們創建一個蝙蝠類:
我們再創建一個蝙蝠俠的類,同時繼承Superhero和Bat:
執行這個類:
我們可以通過yield關鍵字創建一個生成器,每次我們調用的時候執行到yield關鍵字處則停止。下次再次調用則還是從yield處開始往下執行:
除了yield之外,我們還可以使用()小括號來生成一個生成器:
關於生成器和迭代器更多的內容,可以查看下面這篇文章:
五分鐘帶你弄懂迭代器與生成器,夯實代碼能力
我們引入functools當中的wraps之後,可以創建一個裝飾器。裝飾器可以在不修改函數內部代碼的前提下,在外面包裝一層其他的邏輯:
裝飾器之前也有專門的文章詳細介紹,可以移步下面的傳送門:
一文搞定Python裝飾器,看完面試不再慌
不知道有多少小夥伴可以看到結束,原作者的確非常厲害,把Python的基本操作基本上都囊括在裏面了。如果都能讀懂並且理解的話,那麼Python這門語言就算是入門了。
如果你之前就有其他語言的語言基礎,我想本文讀完應該不用30分鐘。當然在30分鐘內學會一門語言是不可能的,也不是我所提倡的。但至少通過本文我們可以做到熟悉Python的語法,知道大概有哪些操作,剩下的就要我們親自去寫代碼的時候去體會和運用了。
根據我的經驗,在學習一門新語言的前期,不停地查閱資料是免不了的。希望本文可以作為你在使用Python時候的查閱文檔。
最後,我這裡有各種免費的編程類資料,有需要的及時私聊我,回復”學習”,分享給大家,正在發放中…………
如何成為Python高手
如果你有一定的計算機編程知識基礎,那麼很容易學;再如果你對編程十分感興趣,那麼很容易學的。
1,找到合適的入門書籍,大致讀一次,循環啊判斷啊,常用類啊,搞懂(太難的跳過)
2,做些簡單習題,字符串比較,讀取日期之類 Python Cookbook不錯(太難太無趣的,再次跳過,保持興趣是最重要的,不會的以後可以再學)
3,加入Python討論群,態度友好笑眯眯(很重要,這樣高手才會耐心糾正你錯誤常識)。很多小問題,糾結許久,對方一句話點播思路,真的節約你很多時間。耐心指教我的好人,超級超級多謝。
4,解決自己電腦問題。比如下載美劇,零散下載了2,4,5,8集,而美劇共12集,怎樣找出漏下的那幾集?然後問題分解,1讀取全部下載文件名,2提取集的數字,3數字排序和(1–12)對比,找出漏下的。
對於python初學者來說,能找到一個好老師學習格外重要,這能決定你是不是可以做出好的項目,在python開發的路上越走越輕鬆,如果現在的你缺乏學習經驗,找不到老師指導你學習,可以加企 鵝扣-Q前面112再加上中間的983以及最後四位數4903,連在一起就可以了。
5,時刻記住目的,不是為了當程序員,是為了解決問題。比如,想偷懶抓網頁內容,用urllib不行,用request也不行,才發現抓取內容涉及那麼多方面(cookie,header,SSL,url,javascript等等),當然可以聽人家勸,回去好好讀書,從頭讀。 或者,不求效率,只求解決,用ie打開網頁再另存為行不行?ie已經渲染過全部結果了。 問題變成:1–打開指定的10個網頁(一行代碼就行)。更複雜的想保存呢?利用已經存在的包,比如PAM30(我的是Python3),直接打開ie,用函數outHTML另存為文本,再用搜索函數(str搜索也行,re正則也行)找到數據。簡單吧?而且代碼超級短。
6,保持興趣,用最簡單的方式解決問題,什麼底層驅動,各種交換,留給大牛去寫吧。我們利用已經有的包完成。
7,耐心讀文檔,並且練習快速讀文檔。拿到新包,找到自己所需要的函數,是需要快速讀一次的。這個不難,讀函數名,大概能猜到是幹嘛的,然後看看返回值,能判斷是不是自己需要的。
8,寫幫助文件和學習筆記,並發佈共享。教別人的時候,其實你已經自己再次思考一次了。 我覺得學程序就像學英文,把高頻率的詞(循環,判斷,常用包,常用函數)搞懂,就能拼裝成自己想要的軟件。 一定要保持興趣,太複雜的跳過,就像小學數學,小學英語,都是由簡入深。 網絡很平面,無數國際大牛著作好書,關於Python,算法,電腦,網絡,或者程序員思路,或者商業思維(浪潮之巔是本好書)等等,還有國際名校的網絡公開課(中英文字幕翻譯完畢,觀看不是難事),講計算機,網絡,安全,或者安卓系統,什麼都有,只要能持續保持興趣,一點點學習下去,不是難事。 所有天才程序員,都曾是兒童,回到兒童思維來理解和學習。覺得什麼有趣,先學,不懂的,先放着,遇到問題再來學,效果更好。 唯一建議是,不要太貪心,耐心學好一門優雅的語言,再學其它。雖然Javascript做特效很炫,或提某問題時,有大牛建議,用Ruby來寫更好之類,不要改方向。就像老笑話:「要學習遞歸,必須首先理解遞歸。」然後死循環一直下去。堅持學好一門語言,再研究其他。 即使一門語言,跟網絡,數據庫等等相關的部分,若都能學好,再學其他語言,是很快的事情。 另外就是,用學英文的耐心來學計算機,英文遇到不懂的詞,抄下,查詢。 python里,看到Http,查查定義,看到outHtml,查查定義,跟初學英語時候一樣,不要直接猜意思,因為精確描述性定義,跟含糊自然語有區別的。而新人瞎猜,很容易錯誤理解,wiki,google很有用。
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/258465.html