本文目錄一覽:
求Python代碼 如何分類統計
統計一個列表中每一個元素的個數在Python里有兩種實現方式,第一種是新建一個dict,鍵是列表中的元素,值是統計的個數,然後遍歷list。items=[“cc”,”cc”,”ct”,”ct”,”ac”]count={}foriteminitems:count[item]=count.get(item,0)+1
如何用python實現隨機森林分類
大家如何使用scikit-learn包中的類方法來進行隨機森林算法的預測。其中講的比較好的是各個參數的具體用途。
這裡我給出我的理解和部分翻譯:
參數說明:
最主要的兩個參數是n_estimators和max_features。
n_estimators:表示森林裏樹的個數。理論上是越大越好。但是伴隨着就是計算時間的增長。但是並不是取得越大就會越好,預測效果最好的將會出現在合理的樹個數。
max_features:隨機選擇特徵集合的子集合,並用來分割節點。子集合的個數越少,方差就會減少的越快,但同時偏差就會增加的越快。根據較好的實踐經驗。如果是回歸問題則:
max_features=n_features,如果是分類問題則max_features=sqrt(n_features)。
如果想獲取較好的結果,必須將max_depth=None,同時min_sample_split=1。
同時還要記得進行cross_validated(交叉驗證),除此之外記得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。
這裡也給出一篇老外寫的文章:調整你的隨機森林模型參數
這裡我使用了scikit-learn自帶的iris數據來進行隨機森林的預測:
[python] view plain copy
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import numpy as np
from sklearn.datasets import load_iris
iris=load_iris()
#print iris#iris的4個屬性是:萼片寬度 萼片長度 花瓣寬度 花瓣長度 標籤是花的種類:setosa versicolour virginica
print iris[‘target’].shape
rf=RandomForestRegressor()#這裡使用了默認的參數設置
rf.fit(iris.data[:150],iris.target[:150])#進行模型的訓練
#
#隨機挑選兩個預測不相同的樣本
instance=iris.data[[100,109]]
print instance
print ‘instance 0 prediction;’,rf.predict(instance[0])
print ‘instance 1 prediction;’,rf.predict(instance[1])
print iris.target[100],iris.target[109]
返回的結果如下:
(150,)
[[ 6.3 3.3 6. 2.5]
[ 7.2 3.6 6.1 2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2
在這裡我有點困惑,就是在scikit-learn算法包中隨機森林實際上就是一顆顆決策樹組成的。但是之前我寫的決策樹博客中是可以將決策樹給顯示出來。但是隨機森林卻做了黑盒處理。我們不知道內部的決策樹結構,甚至連父節點的選擇特徵都不知道是誰。所以我給出下面的代碼(這代碼不是我的原創),可以顯示的顯示出所有的特徵的貢獻。所以對於貢獻不大的,甚至是負貢獻的我們可以考慮刪除這一列的特徵值,避免做無用的分類。
[python] view plain copy
from sklearn.cross_validation import cross_val_score, ShuffleSplit
X = iris[“data”]
Y = iris[“target”]
names = iris[“feature_names”]
rf = RandomForestRegressor()
scores = []
for i in range(X.shape[1]):
score = cross_val_score(rf, X[:, i:i+1], Y, scoring=”r2″,
cv=ShuffleSplit(len(X), 3, .3))
scores.append((round(np.mean(score), 3), names[i]))
print sorted(scores, reverse=True)
顯示的結果如下:
[(0.934, ‘petal width (cm)’), (0.929, ‘petal length (cm)’), (0.597, ‘sepal length (cm)’), (0.276, ‘sepal width (cm)’)]
這裡我們會發現petal width、petal length這兩個特徵將起到絕對的貢獻,之後是sepal length,影響最小的是sepal width。這段代碼將會提示我們各個特徵的貢獻,可以讓我們知道部分內部的結構。
python把excel第一列相同的分類
Python操作excel文件根據某一字段將相同的類拆分。
需要安裝pandas,xlrd,openpyxl庫。
定義新列需要用到columns.tolist()函數,具體代碼如下:col_name=df.columns.tolistcol_name.insert(新列位置,’新列名稱’)wb=df.reindex(columns=col_name)然後後面再接一行代碼用來定義新列的計算規則。
如何用python將文件夾中圖片根據顏色分類
本文實例講述了Python通過PIL獲取圖片主要顏色並和顏色庫進行對比的方法。分享給大家供大家參考。具體分析如下:
這段代碼主要用來從圖片提取其主要顏色,類似Goolge和Baidu的圖片搜索時可以指定按照顏色搜索,所以我們先需要將每張圖片的主要顏色提取出來,然後將顏色劃分到與其最接近的顏色段上,然後就可以按照顏色搜索了。
在使用google或者baidu搜圖的時候會發現有一個圖片顏色選項,感覺非常有意思,有人可能會想這肯定是人為的去劃分的,呵呵,有這種可能,但是估計人會累死,開個玩笑,當然是通過機器識別的,海量的圖片只有機器識別才能做到。
那用python能不能實現這種功能呢?答案是:能
利用python的PIL模塊的強大的圖像處理功能就可以做到,下面上代碼:
複製代碼代碼如下:
import colorsys
def get_dominant_color(image):
#顏色模式轉換,以便輸出rgb顏色值
image = image.convert(‘RGBA’)
#生成縮略圖,減少計算量,減小cpu壓力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳過純黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) 13, 235)
y = (y – 16.0) / (235 – 16)
# 忽略高亮色
if y 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don’t completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color
使用方法:
from PIL import Image
print get_dominant_color(Image.open(‘logo.jpg’))
這樣就會返回一個rgb顏色,但是這個值是很精確的範圍,那我們如何實現百度圖片那樣的色域呢??
其實方法很簡單,r/g/b都是0-255的值,我們只要把這三個值分別劃分相等的區間,然後組合,取近似值。例如:劃分為0-127,和128-255,然後自由組合,可以出現八種組合,然後從中挑出比較有代表性的顏色即可。
當然我只是舉一個例子,你也可以劃分的更細,那樣顯示的顏色就會更準確~~大家趕快試試吧
原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/254523.html