python爬取b站排行榜(python爬蟲b站)

本文目錄一覽:

用python怎麼爬取B站每一個分區的總播放量?

如果你要的數據量很小的話,python2自帶的urllib2寫爬蟲就可以,如果你要的數據量比較大,就需要專門的爬蟲框架scrapy了。

一個爬蟲,你首先要分析你要爬取的網頁的頁面結構,也就是你需要知道在DOM樹種你要的元素在哪,然後用能操作DOM的包,比如beautifulsoup或者xpath等,解析DOM,獲取你想要的值,然後保存起來

如何用 Python 爬取需要登錄的網站

最近我必須執行一項從一個需要登錄的網站上爬取一些網頁的操作。它沒有我想像中那麼簡單,因此我決定為它寫一個輔助教程。

在本教程中,我們將從我們的bitbucket賬戶中爬取一個項目列表。

教程中的代碼可以從我的 Github 中找到。

我們將會按照以下步驟進行:

提取登錄需要的詳細信息

執行站點登錄

爬取所需要的數據

在本教程中,我使用了以下包(可以在 requirements.txt 中找到):

Python

1

2

   

requests

lxml

   

步驟一:研究該網站

打開登錄頁面

進入以下頁面  「bitbucket.org/account/signin」。你會看到如下圖所示的頁面(執行註銷,以防你已經登錄)

仔細研究那些我們需要提取的詳細信息,以供登錄之用

在這一部分,我們會創建一個字典來保存執行登錄的詳細信息:

1. 右擊 「Username or email」 字段,選擇「查看元素」。我們將使用 「name」 屬性為 「username」 的輸入框的值。「username」將會是 key 值,我們的用戶名/電子郵箱就是對應的 value 值(在其他的網站上這些 key 值可能是 「email」,「 user_name」,「 login」,等等)。

2. 右擊 「Password」 字段,選擇「查看元素」。在腳本中我們需要使用 「name」 屬性為 「password」 的輸入框的值。「password」 將是字典的 key  值,我們輸入的密碼將是對應的 value 值(在其他網站key值可能是 「userpassword」,「loginpassword」,「pwd」,等等)。

3. 在源代碼頁面中,查找一個名為 「csrfmiddlewaretoken」 的隱藏輸入標籤。「csrfmiddlewaretoken」 將是 key 值,而對應的 value 值將是這個隱藏的輸入值(在其他網站上這個 value 值可能是一個名為 「csrftoken」,「 authenticationtoken」 的隱藏輸入值)。列如:「Vy00PE3Ra6aISwKBrPn72SFml00IcUV8」。

最後我們將會得到一個類似這樣的字典:

Python

1

2

3

4

5

   

payload = {

“username”: “lt;USER NAMEgt;”,

“password”: “lt;PASSWORDgt;”,

“csrfmiddlewaretoken”: “lt;CSRF_TOKENgt;”

}

   

請記住,這是這個網站的一個具體案例。雖然這個登錄表單很簡單,但其他網站可能需要我們檢查瀏覽器的請求日誌,並找到登錄步驟中應該使用的相關的 key 值和 value 值。

步驟2:執行登錄網站

對於這個腳本,我們只需要導入如下內容:

Python

1

2

   

import requests

from lxml import html

   

首先,我們要創建 session 對象。這個對象會允許我們保存所有的登錄會話請求。

Python

1

   

session_requests = requests.session()

   

第二,我們要從該網頁上提取在登錄時所使用的 csrf 標記。在這個例子中,我們使用的是 lxml 和 xpath 來提取,我們也可以使用正則表達式或者其他的一些方法來提取這些數據。

Python

1

2

3

4

5

   

login_url = “n/?next=/”

result = session_requests.get(login_url)

tree = html.fromstring(result.text)

authenticity_token = list(set(tree.xpath(“//input[@name=’csrfmiddlewaretoken’]/@value”)))[0]

   

**更多關於xpath 和lxml的信息可以在這裡找到。

接下來,我們要執行登錄階段。在這一階段,我們發送一個 POST 請求給登錄的 url。我們使用前面步驟中創建的 payload 作為 data 。也可以為該請求使用一個標題並在該標題中給這個相同的 url 添加一個參照鍵。

Python

1

2

3

4

5

   

result = session_requests.post(

login_url,

data = payload,

headers = dict(referer=login_url)

)

   

步驟三:爬取內容

現在,我們已經登錄成功了,我們將從 bitbucket dashboard 頁面上執行真正的爬取操作。

Python

1

2

3

4

5

   

url = ‘/overview’

result = session_requests.get(

url,

headers = dict(referer = url)

)

   

為了測試以上內容,我們從 bitbucket dashboard 頁面上爬取了項目列表。我們將再次使用 xpath 來查找目標元素,清除新行中的文本和空格並打印出結果。如果一切都運行 OK,輸出結果應該是你 bitbucket 賬戶中的 buckets / project 列表。

Python

1

2

3

4

5

   

tree = html.fromstring(result.content)

bucket_elems = tree.findall(“.//span[@class=’repo-name’]/”)

bucket_names = [bucket.text_content.replace(“n”, “”).strip() for bucket in bucket_elems]

print bucket_names

   

你也可以通過檢查從每個請求返回的狀態代碼來驗證這些請求結果。它不會總是能讓你知道登錄階段是否是成功的,但是可以用來作為一個驗證指標。

例如:

Python

1

2

   

result.ok # 會告訴我們最後一次請求是否成功

result.status_code # 會返回給我們最後一次請求的狀態

   

使用python bs4爬b站番劇索引無法爬取所有內容?

這些內容是通過異步接口返回的,前端頁面上當然沒有,你需要去請求後端對應的接口。

Python爬蟲:如何在一個月內學會爬取大規模數

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。

掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。

對於小白來說,爬蟲可能是一件非常複雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……

但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。

在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這裡給你一條平滑的、零基礎快速入門的學習路徑。

1.學習 Python 包並實現基本的爬蟲過程

2.了解非結構化數據的存儲

3.學習scrapy,搭建工程化爬蟲

4.學習數據庫知識,應對大規模數據存儲與提取

5.掌握各種技巧,應對特殊網站的反爬措施

6.分佈式爬蟲,實現大規模並發採集,提升效率

– –

學習 Python 包並實現基本的爬蟲過程

大部分Python爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。

Python爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事百科、騰訊新聞等基本上都可以上手了。

當然如果你需要爬取異步加載的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。

– –

了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入數據庫中。

開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。

當然你可能發現爬回來的數據並不是乾淨的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更乾淨的數據。

– –

學習 scrapy,搭建工程化的爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常複雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。

scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。

學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。

– –

學習數據庫基礎,應對大規模數據存儲

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種數據庫是必須的,學習目前比較主流的 MongoDB 就OK。

MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因為這裡要用到的數據庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

– –

掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態加載等等。

遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。

往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。

– –

分佈式Python爬蟲,實現大規模並發採集

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分佈式爬蟲。

分佈式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。

Scrapy 前面我們說過了,用於做基本的

python爬蟲在爬B站網頁時出現403錯誤,已經添加了ua還是出錯怎麼辦?

403是禁止訪問,就是服務器不讓你訪問他的網站。

爬B站需要添加虛擬的瀏覽器信息,讓服務器以為你是真人而不是解析器。

python怎樣爬取整站

如果是python2.7,利用urllib和urllib2進行爬取,對於要爬取的網站,需要做一些分析,比如要爬取的內容是登錄後才看得到的,那就先要實現模擬登陸,再進行爬取。爬取時一般是發起get請求,攜帶的參數可以通過瀏覽器的開發者模式分析網頁請求來查看。如果是python3,原理也差不多,用的模塊稍微不一樣一些

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/242578.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-12 12:50
下一篇 2024-12-12 12:50

相關推薦

  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29

發表回復

登錄後才能評論