java算法,java算法工程師

本文目錄一覽:

java最常用的幾種加密算法

簡單的Java加密算法有:

第一種. BASE

Base是網絡上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規範。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字符串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。

第二種. MD

MD即Message-Digest Algorithm (信息-摘要算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊算法之一(又譯摘要算法、哈希算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊算法的基礎原理,MD的前身有MD、MD和MD。

MD算法具有以下特點:

壓縮性:任意長度的數據,算出的MD值長度都是固定的。

容易計算:從原數據計算出MD值很容易。

抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。

弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。

強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。

MD的作用是讓大容量信息在用數字簽名軟件簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。

第三種.SHA

安全哈希算法(Secure Hash Algorithm)主要適用於數字簽名標準(Digital Signature Standard DSS)裏面定義的數字簽名算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。

SHA-與MD的比較

因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:

對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。

對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。

速度:在相同的硬件上,SHA-的運行速度比MD慢。

第四種.HMAC

HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

java數字圖像處理常用算法

     前些時候做畢業設計 用java做的數字圖像處理方面的東西 這方面的資料ms比較少 發點東西上來大家共享一下 主要就是些算法 有自己寫的 有人家的 還有改人家的 有的算法寫的不好 大家不要見笑

一 讀取bmp圖片數據

//  獲取待檢測圖像  數據保存在數組 nData[] nB[]  nG[]  nR[]中

public  void getBMPImage(String source) throws Exception {                    clearNData();                        //清除數據保存區         FileInputStream fs = null;               try {            fs = new FileInputStream(source);            int bfLen = ;            byte bf[] = new byte[bfLen];            fs read(bf bfLen); // 讀取 位元組BMP文件頭            int biLen = ;            byte bi[] = new byte[biLen];            fs read(bi biLen); // 讀取 位元組BMP信息頭

// 源圖寬度            nWidth = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源圖高度            nHeight = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 位數            nBitCount = (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源圖大小            int nSizeImage = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 對 位BMP進行解析            if (nBitCount == ){                int nPad = (nSizeImage / nHeight) nWidth * ;                nData = new int[nHeight * nWidth];                nB=new int[nHeight * nWidth];                nR=new int[nHeight * nWidth];                nG=new int[nHeight * nWidth];                byte bRGB[] = new byte[(nWidth + nPad) * * nHeight];                fs read(bRGB (nWidth + nPad) * * nHeight);                int nIndex = ;                for (int j = ; j nHeight; j++){                    for (int i = ; i nWidth; i++) {                        nData[nWidth * (nHeight j ) + i] = ( xff)                                 | (((int) bRGB[nIndex + ] xff) )                                 | (((int) bRGB[nIndex + ] xff) )                                | (int) bRGB[nIndex] xff;                                              nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex] xff;                        nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nIndex += ;                    }                    nIndex += nPad;                } //               Toolkit kit = Toolkit getDefaultToolkit(); //               image = kit createImage(new MemoryImageSource(nWidth nHeight  //                       nData nWidth));

/*               //調試數據的讀取

FileWriter fw = new FileWriter( C:\\Documents and Settings\\Administrator\\My Documents\\nDataRaw txt );//創建新文件                PrintWriter out = new PrintWriter(fw);                for(int j= ;jnHeight;j++){                 for(int i= ;inWidth;i++){                  out print(( * +nData[nWidth * (nHeight j ) + i])+ _                     +nR[nWidth * (nHeight j ) + i]+ _                     +nG[nWidth * (nHeight j ) + i]+ _                     +nB[nWidth * (nHeight j ) + i]+ );                                   }                 out println( );                }                out close();*/                      }        }        catch (Exception e) {            e printStackTrace();            throw new Exception(e);        }         finally {            if (fs != null) {                fs close();            }        }     //   return image;    }

二 由r g b 獲取灰度數組

    public  int[] getBrightnessData(int rData[] int gData[] int bData[]){          int brightnessData[]=new int[rData length];     if(rData length!=gData length || rData length!=bData length       || bData length!=gData length){      return brightnessData;     }     else {      for(int i= ;ibData length;i++){       double temp= *rData[i]+ *gData[i]+ *bData[i];       brightnessData[i]=(int)(temp)+((temp (int)(temp)) ? : );      }      return brightnessData;     }          } 

三 直方圖均衡化

    public int [] equilibrateGray(int[] PixelsGray int width int height)     {                  int gray;         int length=PixelsGray length;         int FrequenceGray[]=new int[length];          int SumGray[]=new int[ ];          int ImageDestination[]=new int[length];         for(int i = ; i length ;i++)         {            gray=PixelsGray[i];               FrequenceGray[gray]++;         }           //    灰度均衡化          SumGray[ ]=FrequenceGray[ ];          for(int i= ;i ;i++){               SumGray[i]=SumGray[i ]+FrequenceGray[i];           }         for(int i= ;i ;i++) {               SumGray[i]=(int)(SumGray[i]* /length);           }         for(int i= ;iheight;i++)          {                for(int j= ;jwidth;j++)               {                   int k=i*width+j;                   ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]                             ) | (SumGray[PixelsGray[k]] ) | SumGray[PixelsGray[k]]);                }           }         return ImageDestination;      } 

四 laplace 階濾波 增強邊緣 圖像銳化

    public int[] laplace DFileter(int []data int width int height){         int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=data[i*width+j];       else        filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }//     System out println( max: +max);//     System out println( min: +min);          for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    } 

五 laplace 階增強濾波 增強邊緣 增強係數delt

    public int[] laplaceHigh DFileter(int []data int width int height double delt){          int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=(int)(( +delt)*data[i*width+j]);       else        filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }     for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    }  六 局部閾值處理 值化

    //   局部閾值處理 值化 niblack s   method    /*原理             T(x y)=m(x y)   +   k*s(x y)            取一個寬度為w的矩形框 (x y)為這個框的中心          統計框內數據 T(x y)為閾值 m(x y)為均值 s(x y)為均方差 k為參數(推薦 )計算出t再對(x y)進行切割 /             這個算法的優點是     速度快 效果好             缺點是     niblack s   method會產生一定的噪聲        */        public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){     int[] processData=new int[data length];     for(int i= ;idata length;i++){      processData[i]= ;     }          if(data length!=width*height)      return processData;          int wNum=width/w;     int hNum=height/h;     int delt[]=new int[w*h];          //System out println( w; +w+   h: +h+   wNum: +wNum+ hNum: +hNum);          for(int j= ;jhNum;j++){      for(int i= ;iwNum;i++){     //for(int j= ;j ;j++){     // for(int i= ;i ;i++){         for(int n= ;nh;n++)               for(int k= ;kw;k++){                delt[n*w+k]=data[(j*h+n)*width+i*w+k];                //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ );               }        System out println();        */        delt=thresholdProcess(delt w h coefficients gate);        for(int n= ;nh;n++)               for(int k= ;kw;k++){                processData[(j*h+n)*width+i*w+k]=delt[n*w+k];               // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ );               }        System out println();        */      }      }          return processData;    } 

七 全局閾值處理 值化

    public int[] thresholdProcess(int []data int width int height double coefficients double gate){     int [] processData=new int[data length];     if(data length!=width*height)      return processData;     else{      double sum= ;      double average= ;      double variance= ;      double threshold;            if( gate!= ){       threshold=gate;       }      else{            for(int i= ;iwidth*height;i++){            sum+=data[i];            }            average=sum/(width*height);                  for(int i= ;iwidth*height;i++){              variance+=(data[i] average)*(data[i] average);            }            variance=Math sqrt(variance);            threshold=average coefficients*variance;      }               for(int i= ;iwidth*height;i++){          if(data[i]threshold)             processData[i]= ;          else                 processData[i]= ;         }               return processData;       }    } 

八  垂直邊緣檢測 sobel算子

    public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{     int filterData[]=new int[data length];     int min= ;     int max= ;     if(data length!=width*height)      return filterData;          try{            for(int i= ;iheight;i++){       for(int j= ;jwidth;j++){        if(i== || i== || i==height || i==height            ||j== || j== || j==width || j==width ){               filterData[i*width+j]=data[i*width+j];         }         else{          double average;            //中心的九個像素點             //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ]          average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ]                         data[(i )*width+j ]+data[(i )*width+j+ ]                     data[(i+ )*width+j ]+data[(i+ )*width+j+ ];             filterData[i*width+j]=(int)(average);         }               if(filterData[i*width+j]min)         min=filterData[i*width+j];         if(filterData[i*width+j]max)         max=filterData[i*width+j];        }        }       for(int i= ;iwidth*height;i++){        filterData[i]=(filterData[i] min)* /(max min);         }          }     catch (Exception e)      {            e printStackTrace();            throw new Exception(e);        }            return filterData;    } 

九  圖像平滑 * 掩模處理(平均處理) 降低噪聲

lishixinzhi/Article/program/Java/hx/201311/26286

Java的排序算法有哪些

java的排序大的分類可以分為兩種:內排序和外排序。在排序過程中,全部記錄存放在內存,則稱為內排序,如果排序過程中需要使用外存,則稱為外排序。下面講的排序都是屬於內排序。

1.插入排序:直接插入排序、二分法插入排序、希爾排序。

2.選擇排序:簡單選擇排序、堆排序。

3.交換排序:冒泡排序、快速排序。

4.歸併排序

5.基數排序

java中的算法,一共有多少種,哪幾種,怎麼分類。

就好比問,漢語中常用寫作方法有多少種,怎麼分類。

算法按用途分,體現設計目的、有什麼特點

算法按實現方式分,有遞歸、迭代、平行、序列、過程、確定、不確定等等

算法按設計范型分,有分治、動態、貪心、線性、圖論、簡化等等

作為圖靈完備的語言,理論上」Java語言「可以實現所有算法。

「Java的標準庫’中用了一些常用數據結構和相關算法.

像apache common這樣的java庫中又提供了一些通用的算法

java迭代算法和迭代器的區別

形式不同。

java迭代算法是一種不斷用變量的舊值遞推出新值的解決問題的方法;java迭代器是程序設計的軟件設計模式。

java迭代器可在容器對象(container,例如鏈表或數組)上遍訪的接口,設計人員無需關心容器對象的內存分配的實現細節。

為什麼java面試算法特別多

因為算法是比較基礎又複雜的學科。

這就是沒理解這道題考察的意圖,不是考察你javaAPI的使用,而是看看你的思維和代碼編程能力。開發工程師的主要工作就是處理各種邏輯。比如給你一個真實的工作需求,讓你把一個數據作排序,但是相同的數只保留兩個,或者給一個字符串按第個字母進行排序。只會使用API或者粘貼複製是遠遠不夠的,而排序算法是邏輯最直接的,最好表達,也是行數較少的思維考查,所以筆試面試里見面的次數就比較多。

Java是一門面向對象的編程語言,不僅吸收了C++語言的各種優點,還摒棄了C++里難以理解的多繼承、指針等概念,因此Java語言具有功能強大和簡單易用兩個特徵。Java語言作為靜態面向對象編程語言的代表,極好地實現了面向對象理論,允許程序員以優雅的思維方式進行複雜的編程。

原創文章,作者:小藍,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/196355.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
小藍的頭像小藍
上一篇 2024-12-03 09:56
下一篇 2024-12-03 09:56

相關推薦

  • java client.getacsresponse 編譯報錯解決方法

    java client.getacsresponse 編譯報錯是Java編程過程中常見的錯誤,常見的原因是代碼的語法錯誤、類庫依賴問題和編譯環境的配置問題。下面將從多個方面進行分析…

    編程 2025-04-29
  • Java JsonPath 效率優化指南

    本篇文章將深入探討Java JsonPath的效率問題,並提供一些優化方案。 一、JsonPath 簡介 JsonPath是一個可用於從JSON數據中獲取信息的庫。它提供了一種DS…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Java Bean加載過程

    Java Bean加載過程涉及到類加載器、反射機制和Java虛擬機的執行過程。在本文中,將從這三個方面詳細闡述Java Bean加載的過程。 一、類加載器 類加載器是Java虛擬機…

    編程 2025-04-29
  • Java騰訊雲音視頻對接

    本文旨在從多個方面詳細闡述Java騰訊雲音視頻對接,提供完整的代碼示例。 一、騰訊雲音視頻介紹 騰訊雲音視頻服務(Cloud Tencent Real-Time Communica…

    編程 2025-04-29
  • Java Milvus SearchParam withoutFields用法介紹

    本文將詳細介紹Java Milvus SearchParam withoutFields的相關知識和用法。 一、什麼是Java Milvus SearchParam without…

    編程 2025-04-29
  • Python實現爬樓梯算法

    本文介紹使用Python實現爬樓梯算法,該算法用於計算一個人爬n級樓梯有多少種不同的方法。 有一樓梯,小明可以一次走一步、兩步或三步。請問小明爬上第 n 級樓梯有多少種不同的爬樓梯…

    編程 2025-04-29
  • Java 8中某一周的周一

    Java 8是Java語言中的一個版本,於2014年3月18日發佈。本文將從多個方面對Java 8中某一周的周一進行詳細的闡述。 一、數組處理 Java 8新特性之一是Stream…

    編程 2025-04-29
  • Java判斷字符串是否存在多個

    本文將從以下幾個方面詳細闡述如何使用Java判斷一個字符串中是否存在多個指定字符: 一、字符串遍歷 字符串是Java編程中非常重要的一種數據類型。要判斷字符串中是否存在多個指定字符…

    編程 2025-04-29
  • AES加密解密算法的C語言實現

    AES(Advanced Encryption Standard)是一種對稱加密算法,可用於對數據進行加密和解密。在本篇文章中,我們將介紹C語言中如何實現AES算法,並對實現過程進…

    編程 2025-04-29

發表回復

登錄後才能評論