本文目錄一覽:
- 1、python處理圖片數據?
- 2、python圖像處理代碼,望大神詳細解釋。越詳細越好
- 3、10 個 Python 圖像編輯工具
- 4、python如何進行圖像比對
- 5、怎樣使用Python圖像處理
- 6、python圖像處理初學者求助
python處理圖片數據?
生成一張純色的圖片
先設置圖片的顏色,接着利用Image模塊的new方法新生成一張圖片,png格式的圖片需要設置成rgba,類似的還有rgb,L(灰度圖等),尺寸設定為640,480,這個可以根據自己的情況設定,顏色同樣如此。
批量生成圖片
上面生成了一張圖片,那要生成十張圖片呢,這種步驟一樣,只是顏色改變的,利用循環就可以解決。首先創建一個顏色列表,把要生成的圖片顏色放進去。接着循環獲取不同的顏色,保存的時候利用字符串拼接的方法改變圖片的名字。
本地生成的圖片
封裝成函數
前面的方法已經可以批量生成圖片了,為了通用性強一點,我們可以封裝成函數,把哪些可以改變的參數單獨抽離出來。尺寸也同樣,使用的時候,可以根據自己的需要定義顏色列表和尺寸。當然還有加一些提示用語和報錯兼容性,這裡就不講了。
本地生成的圖片
python圖像處理代碼,望大神詳細解釋。越詳細越好
#初始化一個矩形np.max(marks)+1行,3列,默認值為0
colorTab = np.zeros((np.max(marks)+1,3))
#遍曆數組,給每行的3列賦值,就是RGB顏色值,8位的
for i in range(len(colorTab)):
aa = np.random.uniform(0,255)
bb = np.random.uniform(0,255)
cc = np.random.uniform(0,255)
colorTab[i] = np.array([aa,bb,cc],np.uint8)
#初始化另一個跟img圖像形狀大小一樣的圖像,一副黑色圖像
bgrImage = np.zeros(img.shape,np.uint8)
#遍歷marks形狀的行列
for i in range(marks.shape[0]):
for j in range(marks.shape[1]):
index = marks[i][j]
#判斷是不是區域與區域之間的分界,如果是邊界(-1),則使用白色顯示
if index == -1:
bgrImage[i][j] = np.array([255,255,255]) #像素點設置位白色
else:
bgrImage[i][j] = colorTab[index] #像素點設置位上邊隨機生成的顏色值
#顯示處理後的圖像圖像
cv2.imshow(‘After ColorFill’,bgrImage)
#總結,先生成一個跟marks相同數量的row*col的一張顏色表,然後創建一個跟marks相同大小的一副黑色圖像
#最後對黑色圖像畫出白色邊界和內部隨機彩色像素值
10 個 Python 圖像編輯工具
以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。
— Parul Pandey
當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。
常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。
下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。
scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。
scikit-image 的 文檔 非常完善,其中包含了豐富的用例。
可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。
圖像濾波(image filtering):
使用 match_template() 方法實現 模板匹配(template matching):
在 展示頁面 可以看到更多相關的例子。
NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標準 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 加載並使用 matplotlib 顯示。
在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。
使用 NumPy 對圖像進行 掩膜(mask)操作:
像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。
在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。
使用 SciPy 的 高斯濾波 對圖像進行模糊處理:
PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發佈新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。
Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。
使用 Pillow 中的 ImageFilter 模塊實現圖像增強:
OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。
入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:
SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:
官方文檔 簡單易懂,同時也附有大量的學習用例。
文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。
Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 遊戲 :
ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。儘管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現交互式圖像分析。
使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:
pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。
圖像縮放:
邊緣提取:
Cairo 是一個用於繪製矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令。
Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。
使用 Pycairo 繪製線段、基本圖形、 徑向漸變(radial gradients):
以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。
via:
作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy
python如何進行圖像比對
import Image
import ImageChops
im1 = Image.open(‘1.jpg’)
im2 = Image.open(‘2.jpg’)
diff = ImageChops.difference(im1, im2).getbbox()
print a + b + ‘is: ‘ + str(diff)
怎樣使用Python圖像處理
Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝「戀花蝶」,是他的文章「用Python圖像處理 」 幫我堅定了用Python和PIL解決問題的想法,對於PIL的一些介紹和基本操作,可以看看這篇文章。我這裡主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,並支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如”L”表示灰度,”1”表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是採用固定的閾 值127來實現的,即灰度高於127的像素值為1,而灰度低於127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python數據庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析
Image.point函數有多種形式,這裡只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,”L”表示灰度,”1”表示二值圖模式。
可見,轉換過程的關鍵在於設計映射表,如果只是需要一個簡單的箝位值,可以將table中高於或低於箝位值的元素分別設為1與0。當然,由於這裡的table並沒有什麼特殊要求,所以可以通過對元素的特殊設定實現(0, 255)範圍內,任意需要的一對一映射關係。
示例代碼如下:
import Image # load a color image im = Image.open(”fun.jpg”) # convert to grey level image Lim = im.convert(”L”) Lim.save(”fun_Level.jpg”) # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ”1”) bim.save(”fun_binary.jpg”)
IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟件總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟件創建和維護階段節約大量資金,而這兩個階段的軟件成本佔到了軟件整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟件代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝於C或者Java,後兩 者都採用了專門的字符標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,採用這些字符可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載
python圖像處理初學者求助
Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。
1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件加載圖像,或者處理其他圖像, 或者從 scratch 創建。
要從文件加載圖像,可以使用open( )函數,在Image模塊中:
1
2
from PIL import Image
im = Image.open(“E:/photoshop/1.jpg”)
加載成功後,將返回一個Image對象,可以通過使用示例屬性查看文件內容:
1
2
3
print(im.format, im.size, im.mode)
(‘JPEG’, (600, 351), ‘RGB’)
format 這個屬性標識了圖像來源。如果圖像不是從文件讀取它的值就是None。size屬性是一個二元tuple,包含width和height(寬度和高度,單位都是px)。 mode 屬性定義了圖像bands的數量和名稱,以及像素類型和深度。常見的modes 有 「L」 (luminance) 表示灰度圖像, 「RGB」 表示真彩色圖像, and 「CMYK」 表示出版圖像。
如果文件打開錯誤,返回 IOError 錯誤。
只要你有了 Image 類的實例,你就可以通過類的方法處理圖像。比如,下列方法可以顯示圖像:
1
im.show()
2)讀寫圖像
PIL 模塊支持大量圖片格式。使用在 Image 模塊的 open() 函數從磁盤讀取文件。你不需要知道文件格式就能打開它,這個庫能夠根據文件內容自動確定文件格式。要保存文件,使用 Image 類的 save() 方法。保存文件的時候文件名變得重要了。除非你指定格式,否則這個庫將會以文件名的擴展名作為格式保存。
加載文件,並轉化為png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
“Python Image Library Test”
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +”.png”
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print(“Cannot convert”, infile)
save() 方法的第二個參數可以指定文件格式。
3)創建縮略圖
縮略圖是網絡開發或圖像軟件預覽常用的一種基本技術,使用Python的Pillow圖像庫可以很方便的建立縮略圖,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob(“E:/photoshop/*.jpg”):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+”.thumbnail”,”JPEG”)
上段代碼對photoshop下的jpg圖像文件全部創建縮略圖,並保存,glob模塊是一種智能化的文件名匹配技術,在批圖像處理中經常會用到。
注意:Pillow庫不會直接解碼或者加載圖像柵格數據。當你打開一個文件,只會讀取文件頭信息用來確定格式,顏色模式,大小等等,文件的剩餘部分不會主動處理。這意味着打開一個圖像文件的操作十分快速,跟圖片大小和壓縮方式無關。
4)圖像的剪切、粘貼與合併操作
Image 類包含的方法允許你操作圖像部分選區,PIL.Image.Image.crop 方法獲取圖像的一個子矩形選區,如:
1
2
3
4
# crop, paste and merge
im = Image.open(“E:/photoshop/lena.jpg”)
box = (100,100,300,300)
region = im.crop(box)
矩形選區有一個4元元組定義,分別表示左、上、右、下的坐標。這個庫以左上角為坐標原點,單位是px,所以上訴代碼複製了一個 200×200 pixels 的矩形選區。這個選區現在可以被處理並且粘貼到原圖。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
當你粘貼矩形選區的時候必須保證尺寸一致。此外,矩形選區不能在圖像外。然而你不必保證矩形選區和原圖的顏色模式一致,因為矩形選區會被自動轉換顏色。
5)分離和合併顏色通道
對於多通道圖像,有時候在處理時希望能夠分別對每個通道處理,處理完成後重新合成多通道,在Pillow中,很簡單,如下:
1
2
r,g,b = im.split()
im = Image.merge(“RGB”, (r,g,b))
對於split( )函數,如果是單通道的,則返回其本身,否則,返回各個通道。
6)幾何變換
對圖像進行幾何變換是一種基本處理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函數的參數是一個新圖像大小的元祖,而rotate( )則需要輸入順時針的旋轉角度。在Pillow中,對於一些常見的旋轉作了專門的定義:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)顏色空間變換
在處理圖像時,根據需要進行顏色空間的轉換,如將彩色轉換為灰度:
1
2
cmyk = im.convert(“CMYK”)
gray = im.convert(“L”)
8)圖像濾波
原創文章,作者:HT2EZ,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/128846.html