關於python與深度學習基礎的信息

本文目錄一覽:

Python深度學習該怎麼學

按照下面的課程安排學習:

階段一:Python開發基礎

Python全棧開發與人工智能之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字符編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。

階段二:Python高級編程和數據庫開發

Python全棧開發與人工智能之Python高級編程和數據庫開發知識學習內容包括:面向對象開發、Socket網絡編程、線程、進程、隊列、IO多路模型、Mysql數據庫開發等。

階段三:前端開發

Python全棧開發與人工智能之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquerybootstrap開發、前端框架VUE開發等。

階段四:WEB框架開發

Python全棧開發與人工智能之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。

階段五:爬蟲開發

Python全棧開發與人工智能之爬蟲開發學習內容包括:爬蟲開發實戰。

階段六:全棧項目實戰

Python全棧開發與人工智能之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關係管理系統開發、路飛學城在線教育平台開發等。

階段七:算法設計模式

階段八:數據分析

Python全棧開發與人工智能之數據分析學習內容包括:金融量化分析。

階段九:機器學習、圖像識別、NLP自然語言處理

Python全棧開發與人工智能之人工智能學習內容包括:機器學習、圖形識別、人工智能玩具開發等。

階段十:Linux系統百萬級並發架構解決方案

階段十一:高並發語言GO開發

Python全棧開發與人工智能之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。

深度學習 python怎麼入門 知乎

自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並紮實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的嚮導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元

大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。

《運用深度學習》

你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。

這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。

在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的複雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。

您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。

Python的深度神經網絡

有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網絡,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。

當您創建深度神經網絡時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。

隨着您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網絡(CNN)和循環神經網絡(RNN)。

在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網絡體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。

在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網絡,而不是複製粘貼任何東西。

代碼庫有點麻煩

並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。

在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。

這在後面的章節中會變得尤其困難,因為代碼會變得更長更複雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。

此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。

更廣闊的人工智能圖景

Trask已經完成了一項偉大的工作,它彙集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。

但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智能問題的魔杖。事實上,對於許多問題,更簡單的機器學習算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。

關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。

你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。

你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度學習Facebook組,或通過在Twitter上關注人工智能研究人員來獲取大量知識。

AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。

深度學習需要有python基礎嗎?

首先,深度學習需要Python基礎,如果你會Java也是可以的,計算機專業同樣可以學習。

深度學習是一類模式分析方法的統稱,就具體研究內容而言,主要涉及三類方法:

(1)基於卷積運算的神經網絡系統,即卷積神經網絡(CNN)。

(2)基於多層神經元的自編碼神經網絡,包括自編碼( Auto encoder)以及近年來受到廣泛關注的稀疏編碼兩類( Sparse Coding)。

(3)以多層自編碼神經網絡的方式進行預訓練,進而結合鑒別信息進一步優化神經網絡權值的深度置信網絡(DBN)。

深度學習作為實現機器學習的技術,拓展了人工智能領域範疇,主要應用於圖像識別、語音識別、自然語言處理。推動市場從無人駕駛和機械人技術行業擴展到金融、醫療保健、零售和農業等非技術行業,因此掌握深度學習的AI工程師成為了各類型企業的招聘熱門崗位。

了解更多查看深度學習。

原創文章,作者:G37RH,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/128832.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
G37RH的頭像G37RH
上一篇 2024-10-03 23:25
下一篇 2024-10-03 23:25

相關推薦

  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29

發表回復

登錄後才能評論