這個用來做python數據分析(用python怎麼做數據分析)

本文目錄一覽:

怎樣用 Python 進行數據分析?

做數據分析,首先你要知道有哪些數據分析的方法,然後才是用Python去調用這些方法

那Python有哪些庫類是能做數據分析的,很多,pandas,sklearn等等

所以你首先要裝一個anaconda套件,它包含了幾乎所有的Python數據分析工具,

之後再學怎麼分析。

python數據分析用什麼軟件

Python是數據處理常用工具,可以處理數量級從幾K至幾T不等的數據,具有較高的開發效率和可維護性,還具有較強的通用性和跨平台性,這裡就為大家分享幾個不錯的數據分析工具。Python數據分析需要安裝的第三方擴展庫有:Numpy、Pandas、SciPy、Matplotpb、Scikit-Learn、Keras、Gensim、Scrapy等,以下是第三方擴展庫的簡要介紹:(推薦學習:Python視頻教程)

1. Pandas

Pandas是Python強大、靈活的數據分析和探索工具,包含Series、DataFrame等高級數據結構和工具,安裝Pandas可使Python中處理數據非常快速和簡單。

Pandas是Python的一個數據分析包,Pandas最初被用作金融數據分析工具而開發出來,因此Pandas為時間序列分析提供了很好的支持。

Pandas是為了解決數據分析任務而創建的,Pandas納入了大量的庫和一些標準的數據模型,提供了高效的操作大型數據集所需要的工具。Pandas提供了大量是我們快速便捷的處理數據的函數和方法。Pandas包含了高級數據結構,以及讓數據分析變得快速、簡單的工具。它建立在Numpy之上,使得Numpy應用變得簡單。

帶有坐標軸的數據結構,支持自動或明確的數據對齊。這能防止由於數據結構沒有對齊,以及處理不同來源、採用不同索引的數據而產生的常見錯誤。

使用Pandas更容易處理丟失數據。合併流行數據庫(如:基於SQL的數據庫)Pandas是進行數據清晰/整理的最好工具。

2. Numpy

Python沒有提供數組功能,Numpy可以提供數組支持以及相應的高效處理函數,是Python數據分析的基礎,也是SciPy、Pandas等數據處理和科學計算庫最基本的函數功能庫,且其數據類型對Python數據分析十分有用。

Numpy提供了兩種基本的對象:ndarray和ufunc。ndarray是存儲單一數據類型的多維數組,而ufunc是能夠對數組進行處理的函數。Numpy的功能:

N維數組,一種快速、高效使用內存的多維數組,他提供矢量化數學運算。可以不需要使用循環,就能對整個數組內的數據進行標準數學運算。非常便於傳送數據到用低級語言編寫(CC++)的外部庫,也便於外部庫以Numpy數組形式返回數據。

Numpy不提供高級數據分析功能,但可以更加深刻的理解Numpy數組和面向數組的計算。

3. Matplotpb

Matplotpb是強大的數據可視化工具和作圖庫,是主要用於繪製數據圖表的Python庫,提供了繪製各類可視化圖形的命令字庫、簡單的接口,可以方便用戶輕鬆掌握圖形的格式,繪製各類可視化圖形。

Matplotpb是Python的一個可視化模塊,他能方便的只做線條圖、餅圖、柱狀圖以及其他專業圖形。 使用Matplotpb,可以定製所做圖表的任一方面。他支持所有操作系統下不同的GUI後端,並且可以將圖形輸出為常見的矢量圖和圖形測試,如PDF SVG JPG PNG BMP GIF.通過數據繪圖,我們可以將枯燥的數字轉化成人們容易接收的圖表。 Matplotpb是基於Numpy的一套Python包,這個包提供了吩咐的數據繪圖工具,主要用於繪製一些統計圖形。 Matplotpb有一套允許定製各種屬性的默認設置,可以控制Matplotpb中的每一個默認屬性:圖像大小、每英寸點數、線寬、色彩和樣式、子圖、坐標軸、網個屬性、文字和文字屬性。

4. SciPy

SciPy是一組專門解決科學計算中各種標準問題域的包的集合,包含的功能有最優化、線性代數、積分、插值、擬合、特殊函數、快速傅里葉變換、信號處理和圖像處理、常微分方程求解和其他科學與工程中常用的計算等,這些對數據分析和挖掘十分有用。

Scipy是一款方便、易於使用、專門為科學和工程設計的Python包,它包括統計、優化、整合、線性代數模塊、傅里葉變換、信號和圖像處理、常微分方程求解器等。Scipy依賴於Numpy,並提供許多對用戶友好的和有效的數值例程,如數值積分和優化。

Python有着像Matlab一樣強大的數值計算工具包Numpy;有着繪圖工具包Matplotpb;有着科學計算工具包Scipy。 Python能直接處理數據,而Pandas幾乎可以像SQL那樣對數據進行控制。Matplotpb能夠對數據和記過進行可視化,快速理解數據。Scikit-Learn提供了機器學習算法的支持,Theano提供了升讀學習框架(還可以使用CPU加速)。

5. Keras

Keras是深度學習庫,人工神經網絡和深度學習模型,基於Theano之上,依賴於Numpy和Scipy,利用它可以搭建普通的神經網絡和各種深度學習模型,如語言處理、圖像識別、自編碼器、循環神經網絡、遞歸審計網絡、卷積神經網絡等。

6. Scikit-Learn

Scikit-Learn是Python常用的機器學習工具包,提供了完善的機器學習工具箱,支持數據預處理、分類、回歸、聚類、預測和模型分析等強大機器學習庫,其依賴於Numpy、Scipy和Matplotpb等。

Scikit-Learn是基於Python機器學習的模塊,基於BSD開源許可證。 Scikit-Learn的安裝需要Numpy Scopy Matplotpb等模塊,Scikit-Learn的主要功能分為六個部分,分類、回歸、聚類、數據降維、模型選擇、數據預處理。

Scikit-Learn自帶一些經典的數據集,比如用於分類的iris和digits數據集,還有用於回歸分析的boston house prices數據集。該數據集是一種字典結構,數據存儲在.data成員中,輸出標籤存儲在.target成員中。Scikit-Learn建立在Scipy之上,提供了一套常用的機器學習算法,通過一個統一的接口來使用,Scikit-Learn有助於在數據集上實現流行的算法。 Scikit-Learn還有一些庫,比如:用於自然語言處理的Nltk、用於網站數據抓取的Scrappy、用於網絡挖掘的Pattern、用於深度學習的Theano等。

7. Scrapy

Scrapy是專門為爬蟲而生的工具,具有URL讀取、HTML解析、存儲數據等功能,可以使用Twisted異步網絡庫來處理網絡通訊,架構清晰,且包含了各種中間件接口,可以靈活的完成各種需求。

8. Gensim

Gensim是用來做文本主題模型的庫,常用於處理語言方面的任務,支持TF-IDF、LSA、LDA和Word2Vec在內的多種主題模型算法,支持流式訓練,並提供了諸如相似度計算、信息檢索等一些常用任務的API接口。

更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python數據分析用什麼軟件的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

python數據分析是幹什麼的

數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。

類型(推薦學習:Python視頻教程)

在統計學領域,有些人將數據分析劃分為描述性統計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重於在數據之中發現新的特徵,而驗證性數據分析則側重於已有假設的證實或證偽。

探索性數據分析是指為了形成值得假設的檢驗而對數據進行分析的一種方法,是對傳統統計學假設檢驗手段的補充。該方法由美國著名統計學家約翰·圖基(John Tukey)命名。

定性數據分析又稱為「定性資料分析」、「定性研究」或者「質性研究資料分析」,是指對諸如詞語、照片、觀察結果之類的非數值型數據(或者說資料)的分析

建議大家使用python進行數據分析,原因有以下四點:

python語言非常的簡單、易學,適合初學者作為入門語言

Python的語法簡單,代碼可讀性高,容易入門,有利於初學者學習。舉個例子,假如我們在處理數據的時候,希望把用戶性別數據數值化,也就是變成計算機可以運算的數字形式,我們可以直接用一行列表推導式完成,十分的簡潔,

python擁有強大的通用編程能力

不同於R或者matlab,python不僅在數據分析方面能力強大,在爬蟲、web、自動化運維甚至遊戲等等很多領域都有廣泛的應用。這就使公司使用一種技術完成全部服務成為可能,有利於各個技術組之間的業務融合。比如,我們用python的爬蟲框架scrapy爬取數據,然後交給pandas做數據處理,最後使用python的web框架django給用戶作展示,這一系列任務可以全部用python完成,能大大提高公司的技術效率。

Python擁有一個巨大而活躍的科學計算社區

Python在數據分析和交互、探索性計算以及數據可視化等方面都有非常成熟的庫和活躍的社區,使python成為數據處理任務重要解決方案。在科學計算方面,python擁有numpy、pandas、matplotpb、scikit-learn、ipython等等一系列非常優秀的庫和工具,特別是pandas在處理中型數據方面可以說有着無與倫比的優勢,正在成為各行業數據處理任務的首選庫。

python是人工智能時代的通用語言

在人工智能火熱的今天,python已經成為了最受歡迎的編程語言。得益於python的簡潔、豐富的庫和社區,大部分深度學習框架都優先支持python語言編程,比如當今最火熱的深度學習框架tensorflow,它雖然是C++編寫的,但對python語言支持最好。

更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python數據分析是幹什麼的的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

原創文章,作者:G6HTA,如若轉載,請註明出處:https://www.506064.com/zh-hk/n/127843.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
G6HTA的頭像G6HTA
上一篇 2024-10-03 23:16
下一篇 2024-10-03 23:16

相關推薦

  • 如何查看Anaconda中Python路徑

    對Anaconda中Python路徑即conda環境的查看進行詳細的闡述。 一、使用命令行查看 1、在Windows系統中,可以使用命令提示符(cmd)或者Anaconda Pro…

    編程 2025-04-29
  • Python列表中負數的個數

    Python列表是一個有序的集合,可以存儲多個不同類型的元素。而負數是指小於0的整數。在Python列表中,我們想要找到負數的個數,可以通過以下幾個方面進行實現。 一、使用循環遍歷…

    編程 2025-04-29
  • Python計算陽曆日期對應周幾

    本文介紹如何通過Python計算任意陽曆日期對應周幾。 一、獲取日期 獲取日期可以通過Python內置的模塊datetime實現,示例代碼如下: from datetime imp…

    編程 2025-04-29
  • Python中引入上一級目錄中函數

    Python中經常需要調用其他文件夾中的模塊或函數,其中一個常見的操作是引入上一級目錄中的函數。在此,我們將從多個角度詳細解釋如何在Python中引入上一級目錄的函數。 一、加入環…

    編程 2025-04-29
  • Python周杰倫代碼用法介紹

    本文將從多個方面對Python周杰倫代碼進行詳細的闡述。 一、代碼介紹 from urllib.request import urlopen from bs4 import Bea…

    編程 2025-04-29
  • Python清華鏡像下載

    Python清華鏡像是一個高質量的Python開發資源鏡像站,提供了Python及其相關的開發工具、框架和文檔的下載服務。本文將從以下幾個方面對Python清華鏡像下載進行詳細的闡…

    編程 2025-04-29
  • 蝴蝶優化算法Python版

    蝴蝶優化算法是一種基於仿生學的優化算法,模仿自然界中的蝴蝶進行搜索。它可以應用於多個領域的優化問題,包括數學優化、工程問題、機器學習等。本文將從多個方面對蝴蝶優化算法Python版…

    編程 2025-04-29
  • Python程序需要編譯才能執行

    Python 被廣泛應用於數據分析、人工智能、科學計算等領域,它的靈活性和簡單易學的性質使得越來越多的人喜歡使用 Python 進行編程。然而,在 Python 中程序執行的方式不…

    編程 2025-04-29
  • Python字典去重複工具

    使用Python語言編寫字典去重複工具,可幫助用戶快速去重複。 一、字典去重複工具的需求 在使用Python編寫程序時,我們經常需要處理數據文件,其中包含了大量的重複數據。為了方便…

    編程 2025-04-29
  • python強行終止程序快捷鍵

    本文將從多個方面對python強行終止程序快捷鍵進行詳細闡述,並提供相應代碼示例。 一、Ctrl+C快捷鍵 Ctrl+C快捷鍵是在終端中經常用來強行終止運行的程序。當你在終端中運行…

    編程 2025-04-29

發表回復

登錄後才能評論