本文將從多個方面對Opencv CUDA編譯進行詳細的闡述和解讀。通過以下小標題,我們將詳細介紹如何進行編譯。
一、環境搭建
在使用CUDA進行加速之前,需要進行CUDA的環境搭建。在這裡以Ubuntu操作系統為例,具體操作如下:
sudo apt-get install linux-headers-`uname -r` -y sudo sh cuda_10.1.243_418.87.00_linux.run vim ~/.bashrc export PATH=$PATH:/usr/local/cuda-10.1/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64 source ~/.bashrc
以上操作創建了CUDA運行所需的依賴項、安裝了CUDA並將其添加到環境變量中。
二、Opencv編譯
接下來,我們需要下載Opencv源碼並進行編譯。具體操作如下:
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev git clone https://github.com/opencv/opencv.git cd opencv git checkout 3.4.5 mkdir build cd build cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local .. make -j8 sudo make install
以上操作下載了Opencv源碼、切換到3.4.5版本、創建了build文件夾並進行編譯安裝。
三、CUDA編譯
接下來,我們需要編譯CUDA。具體操作如下:
cd ~/NVIDIA_CUDA-10.1_Samples/ make -j8
以上操作進入CUDA Samples文件夾,並進行編譯。如果編譯成功,將生成許多樣例可執行文件。
四、Opencv CUDA編譯
在上述步驟順利完成後,我們可以開始進行Opencv CUDA編譯。具體操作如下:
cd ~/opencv/
mkdir build-cuda && cd build-cuda
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN=6.1 \
-D CUDA_ARCH_PTX=6.1 \
-D WITH_CUBLAS=ON \
-D BUILD_EXAMPLES=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
..
make -j8
sudo make install
以上操作創建了build-cuda文件夾並進行了Opencv CUDA編譯。其中CUDA_ARCH_BIN和CUDA_ARCH_PTX可根據自己的顯卡和CUDA版本進行調整。
五、Opencv CUDA測試
最後,我們可以進行Opencv CUDA測試以驗證CUDA是否正常使用。具體操作如下:
cd ~/opencv/samples/gpu ./gpu-template
以上操作進入Opencv GPU示例文件夾並運行gpu-template,如果輸出如下內容,則可以證明CUDA正常使用:
Device 0: "GeForce GTX 1080 Ti"
CUDA Driver Version / Runtime Version 10.1 / 10.1
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 11175 MBytes (11720104960 bytes)
(28) Multiprocessors, (128) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 1582 MHz (1.58 GHz)
Memory Clock rate: 5505 Mhz
Memory Bus Width: 352-bit
L2 Cache Size: 2883584 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 131 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
至此,Opencv CUDA編譯完成並且可以正常使用。
原創文章,作者:LKBPP,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/373095.html
微信掃一掃
支付寶掃一掃