一、什麼是Seq2Seq模型?
Seq2Seq模型是一種基於神經網絡的模型,特別適合處理帶有時序信息的序列數據。其主要用途是將輸入序列轉換為輸出序列,通常應用於機器翻譯、對話系統、語音識別等領域。
Seq2Seq模型包括兩個部分——Encoder和Decoder,其中Encoder用於對輸入序列進行編碼,生成一個向量表示;Decoder則用於利用Encoder生成的向量表示,生成輸出序列。
import tensorflow as tf
# 定義Encoder
class Encoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, enc_units, batch_size):
super(Encoder, self).__init__()
self.batch_size = batch_size
self.enc_units = enc_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.enc_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
def call(self, x, hidden):
x = self.embedding(x)
output, state = self.gru(x, initial_state = hidden)
return output, state
def initialize_hidden_state(self):
return tf.zeros((self.batch_size, self.enc_units))
# 定義Decoder
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_size):
super(Decoder, self).__init__()
self.batch_size = batch_size
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size)
self.attention = BahdanauAttention(self.dec_units)
def call(self, x, hidden, enc_output):
context_vector, attention_weights = self.attention(hidden, enc_output)
x = self.embedding(x)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
output, state = self.gru(x)
output = tf.reshape(output, (-1, output.shape[2]))
x = self.fc(output)
return x, state, attention_weights
# 定義Attention層
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, query, values):
# query是上一步Decoder的隱藏狀態
hidden_with_time_axis = tf.expand_dims(query, 1)
# values是Encoder的所有輸出
score = self.V(tf.nn.tanh(
self.W1(values) + self.W2(hidden_with_time_axis)))
# 計算注意力權重
attention_weights = tf.nn.softmax(score, axis=1)
# 計算context向量
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
二、Seq2Seq模型的訓練過程
在訓練階段,我們需要定義損失函數和優化器,通過反向傳播使損失函數達到最小,進而得到模型的最優參數。
在Seq2Seq模型中,通常採用交叉熵損失函數;優化器方面常用的有Adam、RMSprop和SGD等。此外,為了增加模型的效果,還可以採用一些技巧,如Teacher Forcing和Scheduled Sampling。
# 定義損失函數和優化器
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
optimizer = tf.keras.optimizers.Adam()
# 定義模型
encoder = Encoder(input_vocab_size, embedding_dim, units, BATCH_SIZE)
decoder = Decoder(output_vocab_size, embedding_dim, units, BATCH_SIZE)
# 定義訓練步驟
@tf.function
def train_step(inp, targ, enc_hidden):
loss = 0
with tf.GradientTape() as tape:
enc_output, enc_hidden = encoder(inp, enc_hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([targ_lang.word_index['']] * BATCH_SIZE, 1)
# Teacher Forcing - 將真實輸出作為輸入
for t in range(1, targ.shape[1]):
predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)
loss += loss_function(targ[:, t], predictions)
dec_input = tf.expand_dims(targ[:, t], 1)
batch_loss = (loss / int(targ.shape[1]))
variables = encoder.trainable_variables + decoder.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
return batch_loss
三、Seq2Seq模型的應用
隨着深度學習技術的不斷發展,Seq2Seq模型的應用範圍也越來越廣泛。例如在機器翻譯領域,我們可以使用Seq2Seq模型將一種語言翻譯成另一種語言;在對話系統中,我們可以使用Seq2Seq模型回答用戶的提問;在語音識別領域,我們可以使用Seq2Seq模型把語音信號轉換成文字。
# 機器翻譯示例
def evaluate(sentence):
attention_plot = np.zeros((max_length_targ, max_length_inp))
sentence = preprocess_sentence(sentence)
inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
maxlen=max_length_inp,
padding='post')
inputs = tf.convert_to_tensor(inputs)
result = ''
hidden = [tf.zeros((1, units))]
enc_out, enc_hidden = encoder(inputs, hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([targ_lang.word_index['']], 0)
for t in range(max_length_targ):
predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_out)
# 存儲attention權重
attention_weights = tf.reshape(attention_weights, (-1, ))
attention_plot[t] = attention_weights.numpy()
predicted_id = tf.argmax(predictions[0]).numpy()
result += targ_lang.index_word[predicted_id] + ' '
if targ_lang.index_word[predicted_id] == '':
return result, sentence, attention_plot
# 把預測的結果作為下一步的輸入
dec_input = tf.expand_dims([predicted_id], 0)
return result, sentence, attention_plot
def translate(sentence):
result, sentence, attention_plot = evaluate(sentence)
print('Input: %s' % (sentence))
print('Predicted translation: {}'.format(result))
原創文章,作者:IIJHD,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/372446.html