Yolov5是目標檢測領域中一種高效的神經網絡結構,是Yolov系列的最新版本。本文將以Yolov5網絡結構為中心,從多個方面對其進行詳細闡述。
一、骨幹網絡
骨幹網絡是指網絡的主幹部分,用於提取圖像的特徵表示。Yolov5的骨幹網絡採用CSPNet(Cross Stage Partial Network)架構,相較於傳統的ResNet等網絡,CSPNet可以顯著減小網絡的參數量和運算量。該網絡結構在既保證檢測精度的情況下,顯著提高了訓練和推理的效率。
import torch.nn as nn
class CSPDarknet(nn.Module):
def __init__(self, layers):
super(CSPDarknet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.LeakyReLU(0.1, inplace=True)
self.layer1 = self.make_layers(32, layers[0])
self.layer2 = self.make_layers(64, layers[1], stride=2)
self.layer3 = self.make_layers(128, layers[2], stride=2)
self.layer4 = self.make_layers(256, layers[3], stride=2)
self.layer5 = self.make_layers(512, layers[4], stride=2)
self.layer6 = self.make_layers(1024, layers[5], stride=2)
self._initialize_weights()
def make_layers(self, in_channels, num_blocks, stride=1):
layers = []
layers.append(('res0', ResBlock(in_channels, in_channels * 2, shortcut=False)))
for i in range(num_blocks):
layers.append(('residual_%d' % i, ResBlock(in_channels * 2, in_channels, stride)))
return nn.Sequential(OrderedDict(layers))
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
x6 = self.layer6(x5)
return x4, x5, x6
二、特徵金字塔
目標檢測任務中,不同大小不同層次的目標需要被檢測到,並且需要提取多尺度的特徵。Yolov5使用FPN(Feature Pyramid Network)特徵金字塔結構,通過特徵上採樣和特徵拼接的方式實現多層次、多尺度特徵的融合。它可以同時處理不同尺度的目標,提高模型的檢測效果。
class YOLOv5(nn.Module):
def __init__(self, cfg, ch=3):
super(YOLOv5, self).__init__()
self.ch = ch
self.model, self.save = parse_model(cfg)
self.nc = int(self.model[-1]['filters'])
self.nl = len(self.model)
self.stem = Focus(ch, 80, 3)
self.m = nn.Sequential(*self.model[1:])
self.init_weights()
def forward(self, x):
x = self.stem(x)
yolo_out, _, _ = [], [], []
for i in range(self.nl):
x = self.m[i](x)
if i in [2, 4, 6]:
yolo_out.append(x)
elif i == 8:
x = self.m[i](x, yolo_out[-1])
yolo_out.append(x)
return yolo_out
三、激活函數
激活函數在神經網絡中扮演着至關重要的角色,Yolov5使用的激活函數是Mish。Mish激活函數在保持與ReLU相同的計算速度的同時,提高了模型的精度。
class Mish(nn.Module):
def __init__(self):
super(Mish, self).__init__()
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class MishModule(nn.Module):
def __init__(self, parent):
super(MishModule, self).__init__()
self.model = parent.model
for i, m in enumerate(self.model.children()):
self.model[i] = Mish() if type(m) == nn.ReLU else m
def forward(self, x):
return self.model(x)
四、預測頭
Yolov5的預測頭由三個卷積層構成,用於對特徵圖進行輸出通道的降維,並且進行邊界框和目標類別的預測。預測頭可以預測多種不同尺度下的目標,實現多尺度目標檢測。
class Conv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size=1, stride=1):
super().__init__()
self.conv = nn.Conv2d(in_channel, out_channel, kernel_size, stride, kernel_size // 2, bias=False)
self.bn = nn.BatchNorm2d(out_channel)
self.act = nn.LeakyReLU(0.1, inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
class PredictionLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.pred = nn.Sequential(
Conv(in_channels, in_channels * 2),
Conv(in_channels * 2, in_channels),
nn.Conv2d(in_channels, out_channels, kernel_size=1)
)
def forward(self, x):
x = self.pred(x)
return x
五、總結
Yolov5是目標檢測領域中一種高效的神經網絡結構,採用了CSPNet骨幹網絡和FPN特徵金字塔結構。同時,使用Mish激活函數和預測頭實現多尺度目標檢測。該網絡結構在保證檢測精度的同時,大大提高了訓練和推理的效率,主要應用於實時目標檢測和視頻分析等領域。
原創文章,作者:UZVIG,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/370238.html