全面了解Linux PyTorch

一、安裝和環境配置

1、安裝PyTorch

conda install pytorch torchvision torchaudio -c pytorch

2、驗證是否安裝成功

import torch
print(torch.__version__)

3、安裝CUDA

conda install cudatoolkit

4、創建環境

conda create --name torch-env
conda activate torch-env

5、將新環境添加到Jupyter Notebook

python -m ipykernel install --user --name torch-env --display-name "Python (torch-env)"

二、數據處理

1、加載數據集

from torchvision import datasets, transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)

2、數據加載器

from torch.utils.data import DataLoader

train_batch_size = 64
test_batch_size = 1000

train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

3、數據可視化

import matplotlib.pyplot as plt

images, labels = next(iter(train_loader))
fig = plt.figure(figsize=(10, 10))
for i in range(64):
    ax = fig.add_subplot(8, 8, i+1, xticks=[], yticks=[])
    ax.imshow(images[i].view(28, 28))
    ax.set_title(str(labels[i].item()))
plt.show()

三、模型訓練

1、定義模型

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
        self.conv2 = nn.Conv2d(20, 50, kernel_size=5)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

net = Net()

2、定義損失函數和優化器

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)

3、訓練模型

for epoch in range(3):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 100 == 99:    
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 100))
            running_loss = 0.0
print('Finished Training')

四、模型評估

1、測試模型

correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

2、查看每個類別的準確率

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(test_batch_size):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1

for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        i, 100 * class_correct[i] / class_total[i]))

五、模型保存和加載

1、保存模型

PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)

2、加載模型

net = Net()
net.load_state_dict(torch.load(PATH))

以上就是Linux PyTorch的基本使用方法,包括了安裝和環境配置、數據處理、模型訓練、模型評估、模型保存和加載等方面。通過這篇文章,你可以初步掌握Linux PyTorch的使用方法,為進行更加複雜的深度學習實驗打下基礎。

原創文章,作者:ALBRX,如若轉載,請註明出處:https://www.506064.com/zh-hant/n/361069.html

(0)
打賞 微信掃一掃 微信掃一掃 支付寶掃一掃 支付寶掃一掃
ALBRX的頭像ALBRX
上一篇 2025-02-24 00:33
下一篇 2025-02-24 00:34

相關推薦

  • Python應用程序的全面指南

    Python是一種功能強大而簡單易學的編程語言,適用於多種應用場景。本篇文章將從多個方面介紹Python如何應用於開發應用程序。 一、Web應用程序 目前,基於Python的Web…

    編程 2025-04-29
  • Python zscore函數全面解析

    本文將介紹什麼是zscore函數,它在數據分析中的作用以及如何使用Python實現zscore函數,為讀者提供全面的指導。 一、zscore函數的概念 zscore函數是一種用於標…

    編程 2025-04-29
  • 全面解讀數據屬性r/w

    數據屬性r/w是指數據屬性的可讀/可寫性,它在程序設計中扮演着非常重要的角色。下面我們從多個方面對數據屬性r/w進行詳細的闡述。 一、r/w的概念 數據屬性r/w即指數據屬性的可讀…

    編程 2025-04-29
  • Python計算機程序代碼全面介紹

    本文將從多個方面對Python計算機程序代碼進行詳細介紹,包括基礎語法、數據類型、控制語句、函數、模塊及面向對象編程等。 一、基礎語法 Python是一種解釋型、面向對象、動態數據…

    編程 2025-04-29
  • Matlab二值圖像全面解析

    本文將全面介紹Matlab二值圖像的相關知識,包括二值圖像的基本原理、如何對二值圖像進行處理、如何從二值圖像中提取信息等等。通過本文的學習,你將能夠掌握Matlab二值圖像的基本操…

    編程 2025-04-28
  • 瘋狂Python講義的全面掌握與實踐

    本文將從多個方面對瘋狂Python講義進行詳細的闡述,幫助讀者全面了解Python編程,掌握瘋狂Python講義的實現方法。 一、Python基礎語法 Python基礎語法是學習P…

    編程 2025-04-28
  • 全面解析Python中的Variable

    Variable是Python中常見的一個概念,是我們在編程中經常用到的一個變量類型。Python是一門強類型語言,即每個變量都有一個對應的類型,不能無限制地進行類型間轉換。在本篇…

    編程 2025-04-28
  • Zookeeper ACL 用戶 anyone 全面解析

    本文將從以下幾個方面對Zookeeper ACL中的用戶anyone進行全面的解析,並為讀者提供相關的示例代碼。 一、anyone 的作用是什麼? 在Zookeeper中,anyo…

    編程 2025-04-28
  • Switchlight的全面解析

    Switchlight是一個高效的輕量級Web框架,為開發者提供了簡單易用的API和豐富的工具,可以快速構建Web應用程序。在本文中,我們將從多個方面闡述Switchlight的特…

    編程 2025-04-28
  • Python合集符號全面解析

    Python是一門非常流行的編程語言,在其語法中有一些特殊的符號被稱作合集符號,這些符號在Python中起到非常重要的作用。本文將從多個方面對Python合集符號進行詳細闡述,幫助…

    編程 2025-04-28

發表回復

登錄後才能評論